KOMPARASI ALGORITMA DECISION TREE DAN RANDOM FOREST DALAM MENDETEKSI INTRUSI JARINGAN INTERNET

research
  • 23 Oct
  • 2024

KOMPARASI ALGORITMA DECISION TREE DAN RANDOM FOREST DALAM MENDETEKSI INTRUSI JARINGAN INTERNET

Keamanan jaringan merupakan aspek krusial dalam dunia digital saat ini, terutama dengan meningkatnya frekuensi dan kompleksitas serangan siber. Intrusion Detection System (IDS) menjadi salah satu alat penting untuk mengidentifikasi dan merespons serangan terhadap jaringan komputer. Penelitian ini bertujuan untuk membandingkan kinerja dua algoritma machine learning, Decision Tree dan Random Forest, dalam mendeteksi intrusi jaringan internet dengan menggunakan dataset NSL-KDD, versi yang lebih baik dari KDD 99. Dalam penelitian ini, kedua algoritma diterapkan pada dataset NSL-KDD yang berisi 125.973 sampel trafik jaringan, menggunakan pustaka scikit-learn dan bahasa pemrograman Python. Kinerja masing-masing algoritma dievaluasi berdasarkan akurasi deteksi intrusi. Hasil penelitian menunjukkan bahwa algoritma Decision Tree mencapai akurasi sebesar 93%, sementara algoritma Random Forest mencapai akurasi yang sangat baik sebesar 99%. Penelitian ini menyimpulkan bahwa meskipun kedua algoritma menunjukkan kinerja yang baik, Random Forest lebih unggul dalam hal akurasi deteksi intrusi pada dataset NSL-KDD. Temuan ini diharapkan dapat memberikan kontribusi signifikan dalam pengembangan sistem keamanan jaringan yang lebih efektif dan efisien, serta memberikan wawasan bagi penelitian lebih lanjut dalam bidang deteksi intrusi menggunakan teknologi machine learning.

Unduhan

 

  • jurnal .png

    Jurnal

    •   diunduh 16x | Ukuran 20,583

REFERENSI

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150

Alex Khang, D. A. K. S. K. G. S. R. (2023). Smart Cities IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques. CRC Press.

Ashwini Pathak, & Sakshi Pathak. (2020). Study on Decision Tree and KNN Algorithm for Intrusion Detection System. International Journal of Engineering Research And, V9(05). https://doi.org/10.17577/IJERTV9IS050303

Brij B. Gupta, A. D. (2021). Distributed Denial of Service (DDoS) Attacks Classification, Attacks, Challenges and Countermeasures. CRC Press.

Camana Acosta, M. R., Ahmed, S., Garcia, C. E., & Koo, I. (2020). Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks. IEEE Access, 8, 19921–19933. https://doi.org/10.1109/ACCESS.2020.2968934

Cybellium Ltd. (2023). Mastering Network Security. Cybellium Ltd.

Dedik Kurniawan. (2023). Ilmu Hacking. Elex Media Komputindo.

Ettore Galluccio, E. C. G. L. (2020). SQL Injection Strategies Practical Techniques to Secure Old Vulnerabilities Against Modern Attacks. Packt Publishing.

Fiqri, K. G. (2020). ANALISIS PERBANDINGAN KLASIFIER DECISION TREE, RANDOM FOREST, DAN ADABOOST DALAM MENDETEKSI SERANGAN SIBER. https://api.semanticscholar.org/CorpusID:212818622

Guezzaz, A., Benkirane, S., Azrour, M., & Khurram, S. (2021). A Reliable Network Intrusion Detection Approach Using Decision Tree with Enhanced Data Quality. Security and Communication Networks, 2021, 1–8. https://doi.org/10.1155/2021/1230593

Irfan Ardiansah, R. H. P. (2023). Memulai Python Belajar Python dari Nol. CV. Cendekia Press.

Janiesch, C. and Z. P. and H. K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685–695.

Jason Brownlee. (2016). Machine Learning Algorithms From Scratch with Python. Machine Learning Mastery.

Kasmara, B. N., Handayani, E. T. E., & Nathasia, N. D. (2024). Perbandingan Kinerja Algoritma K-Nearest Neighbors (K-NN) Dan Decision Tree dalam Deteksi Paket Malis pada Jaringan. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 8(3), 320. https://doi.org/10.30998/string.v8i3.22362

Kevin Jolly. (2018). Machine Learning with Scikit-learn Quick Start Guide Classification, Regression, and Clustering Techniques in Python. Packt Publishing.

Khan, M. Y., Qayoom, A., Nizami, M. S., Siddiqui, M. S., Wasi, S., & Raazi, S. M. K.-R. (2021). Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques. Complexity, 2021, 1–18. https://doi.org/10.1155/2021/2553199

Kong, Q. and S. T. and B. A. (2020). Python programming and numerical methods: A guide for engineers and scientists. Academic Press.

Kurniabudi, K., Harris, A., & Veronica, V. (2022). Komparasi Performa Tree-Based Classifier Untuk Deteksi Anomali Pada Data Berdimensi Tinggi dan Tidak Seimbang. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(1), 370. https://doi.org/10.30865/mib.v6i1.3473

Liu, C., Gu, Z., & Wang, J. (2021). A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning. IEEE Access, 9, 75729–75740. https://doi.org/10.1109/ACCESS.2021.3082147

Luthfansa, Z. M., & Rosiani, U. D. (2021). Pemanfaatan Wireshark untuk Sniffing Komunikasi Data Berprotokol HTTP pada Jaringan Internet. Journal of Information Engineering and Educational Technology, 5(1), 34–39. https://doi.org/10.26740/jieet.v5n1.p34-39

Mindara, C. L. and Z. A. and U. H. P. and H. T. and M. G. P. (2023). Deteksi Intrusi Untuk Klasifikasi Serangan Jaringan Dengan Penerapan Algoritma Convolutional Neural Network. Jurnal ICT: Information Communication \& Technology, 23, 517–522.

Muh. Sahal, S. Kom. (2021). Administrasi Infrastruktur Jaringan SMK/MAK Kelas XII. Gramedia Widiasarana indonesia.

Mulawarman dkk. (2020). Problematika Penggunaan Internet.

Partha Majumdar. (2023). Mastering Classification Algorithms for Machine Learning Learn how to Apply Classification Algorithms for Effective Machine Learning Solutions. BPB Publications.

Purba Daru Kusuma. (2020). Machine Learning Teori, Program, Dan Studi Kasus. Deepublish.

Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Khan, M. K. A. A. (2020). Performance Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review. Procedia Computer Science, 171, 1251–1260. https://doi.org/10.1016/j.procs.2020.04.133

Savargiv, M., Masoumi, B., & Keyvanpour, M. R. (2021). A New Random Forest Algorithm Based on Learning Automata. Computational Intelligence and Neuroscience, 2021, 1–19. https://doi.org/10.1155/2021/5572781

T.N. Nguyen, J. I. (2022). Advances in Parallel Computing Algorithms, Tools and Paradigms (J. I. T. N. N. D.J. Hemanth, Ed.). IOS Press.

Wang, X., Chen, S., & Su, J. (2020). Real Network Traffic Collection and Deep Learning for Mobile App Identification. Wireless Communications and Mobile Computing, 2020, 1–14. https://doi.org/10.1155/2020/4707909

Wu, T., Fan, H., Zhu, H., You, C., Zhou, H., & Huang, X. (2022). Intrusion detection system combined enhanced random forest with SMOTE algorithm. EURASIP Journal on Advances in Signal Processing, 2022(1), 39. https://doi.org/10.1186/s13634-022-00871-6