Dengan berkembangnya perangkat lunak maka dapat dengan mudah mengakses dan memperoleh informasi. Kualitas sebuah perangkat lunak sebelum digunakan haruslah di uji kualitasnya. Maka dari itu perlulah dilakukan pengujian berupa pengujian perangkat lunak untuk melihat apakah perangkat lunak tersebut mengandung cacat atau tidak. Dalam penelitian ini, pendekatan yang menggabungkan teknik Ensemble Gradient Boosting, dengan teknik pengoptimalan menggunakan empat model Hyperparameter Grid Search, Random Search, Bayesian Optimization (Hyperopt), dan Optuna. Tujuan utama penelitian ini adalah untuk meningkatkan performa klasifikasi prediksi cacat pada software. Penelitian dengan menguji dataset metrik cacat software menggunakan Ensemble Gradient Boosting mendapatkan hasil akurasi 77.870% dengan nilai AUC 0,777. Grid Search dengan akurasi 68,786% dengan nilai AUC 0,688. Random search menghasilakan akurasi 67,795% dengan nilai AUC 0,678, Hyperopt dengan hasil akurasi 79,356% dengan nilai AUC 0,792. Optuna dengan hasil 68,538% dengan nilai AUC 0,685%. model dengan kinerja terbaik pada pengujian ini yaitu Hyperopt karena memengaruhi peningkatan akurasi dari model lain yang diujikan.
Tesis Oky Kurniawan
[1] A. Taufik and R. Faizal Amir, “PENERAPAN TEKNIK PSO OVER SAMPLING DAN ADABOOST J48 UNTUK MEMPREDIKSI CACAT SOFTWARE,” JURNAL RESPONSIF, vol. 2, no. 2, pp. 198–203, 2020, [Online]. Available: http://promise.site.uottawa.ca/SERepository.
[2] R. Faizal Amir and I. Agus Sobari, “Penerapan PSO Over Sampling Dan Adaboost Random Forest Untuk Memprediksi Cacat Software,” IJSE-Indonesian Journal on Software Engineering, vol. 6, no. 2, pp. 230–239, 2020.
[3] S. A. Putri, “Prediksi Cacat Software Dengan Teknik Sampel Dan Seleksi Fitur Pada Bayesian Network,” Jurnal Kajian Ilmiah, vol. 19, no. 1, p. 17, Jan. 2019, doi: 10.31599/jki.v19i1.314.
[4] J. Xu, F. Wang, and J. Ai, “Defect Prediction with Semantics and Context Features of Codes Based on Graph Representation Learning,” IEEE Trans Reliab, vol. 70, no. 2, pp. 613–625, Jun. 2021, doi: 10.1109/TR.2020.3040191.
[5] S. A. Putri and Frieyadie, “Combining integreted sampling technique with feature selection for software defect prediction,” in 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017, 2017. doi: 10.1109/CITSM.2017.8089264.
[6] N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 117–126, Nov. 2021, doi: 10.34128/jsi.v7i2.313.
[7] A. Alazba and H. Aljamaan, “Software Defect Prediction Using Stacking Generalization of Optimized Tree-Based Ensembles,” Applied Sciences (Switzerland), vol. 12, no. 9, May 2022, doi: 10.3390/app12094577.
[8] R. Faizal Amir and I. Agus Sobari, “Penerapan PSO Over Sampling Dan Adaboost Random Forest Untuk Memprediksi Cacat Software,” IJSE-Indonesian Journal on Software Engineering, vol. 6, no. 2, pp. 230–239, 2020.
[9] A. Iqbal et al., “Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets,” 2019. [Online]. Available: www.ijacsa.thesai.org
[10] Y. D. Pramudita, S. S. Putro, and N. Makhmud, “Klasifikasi Berita Olahraga Menggunakan Metode Naïve Bayes dengan Enhanced Confix Stripping Stemmer,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 3, p. 269, Aug. 2018, doi: 10.25126/jtiik.201853810.
[11] J. Homepage, A. Roihan, P. Abas Sunarya, and A. S. Rafika, “IJCIT (Indonesian Journal on Computer and Information Technology) Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” 2019.
[12] C. E. G. Moreta, M. R. C. Acosta, and I. Koo, “Prediction of digital terrestrial television coverage using machine learning regression,” IEEE Transactions on Broadcasting, vol. 65, no. 4, pp. 702–712, 2019, doi: 10.1109/TBC.2019.2901409.
[13] M. R. Camana Acosta, S. Ahmed, C. E. Garcia, and I. Koo, “Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks,” IEEE Access, vol. 8, no. Ml, pp. 19921–19933, 2020, doi: 10.1109/ACCESS.2020.2968934.
[14] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-parameter optimization of classifiers, using an artificial immune network and its application to software bug prediction,” IEEE Access, vol. 8, pp. 20954–20964, 2020, doi: 10.1109/ACCESS.2020.2968362.
[15] Emma Andini, M. R. Faisal, Rudy Herteno, R. A. Nugroho, Friska Abadi, and Muliadi, “PENINGKATAN KINERJA PREDIKSI CACAT SOFTWARE DENGAN HYPERPARAMETER TUNING PADA ALGORITMA KLASIFIKASI DEEP FOREST,” Jurnal Mnemonic, vol. 5, no. 2, pp. 119–127, 2022, doi: 10.36040/mnemonic.v5i2.4793.
[16] W. Ustyannie, E. Setyaningsih, and C. Iswahyudi, “Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine and logistic regression,” JURNAL INFOTEL, vol. 13, no. 4, pp. 176–184, Dec. 2021, doi: 10.20895/infotel.v13i4.726.
[17] R. Prasetyo et al., “Komparasi Algoritma Logistic Regression dan Random Forest pada Prediksi Cacat Software,” 2021. [Online]. Available: http://promise.site.uottawa.ca.
[18] S. B. Koduri, L. Gunisetti, C. R. Ramesh, K. Mutyalu, and D. Ganesh, “Prediction of crop production using adaboost regression method Prediction of crop production using adaboost regression method,” J Phys Conf Ser, 2019, doi: 10.1088/1742-6596/1228/1/012005.
[19] H. Rao et al., “Feature selection based on artificial bee colony and gradient boosting decision tree,” Applied Soft Computing Journal, 2019, doi: 10.1016/j.asoc.2018.10.036.
[20] Z. Zhang et al., “Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning,” Sci Rep, vol. 8, no. 1, pp. 1–12, 2018, doi: 10.1038/s41598-018-28840-w.
[21] S. E. Suryana, B. Warsito, and S. Suparti, “PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK,” Jurnal Gaussian, vol. 10, no. 4, pp. 617–623, 2021, doi: 10.14710/j.gauss.v10i4.31335.
[22] S. Putatunda and K. Rama, “A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting,” in 2019 15th International Conference on Information Processing: Internet of Things, ICINPRO 2019 - Proceedings, Apr. 2019. doi: 10.1109/ICInPro47689.2019.9092025.
[23] F. Ernawan, K. Handayani, M. Fakhreldin, and Y. Abbker, “Light Gradient Boosting with Hyper Parameter Tuning Optimization for COVID-19 Prediction,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 8, pp. 514–523, 2022, doi: 10.14569/IJACSA.2022.0130859.
[24] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[25] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[26] M. Rizky Mubarok, R. Herteno, I. Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung Mangkurat Jalan Ahmad Yani Km, and K. Selatan, “Hyper-Parameter Tuning Pada Xgboost Untuk Prediksi Keberlangsungan Hidup Pasien Gagal Jantung,” Klik - Kumpulan Jurnal Ilmu Komputer, vol. 9, no. 2, pp. 391–401, 2022, [Online]. Available: http://klik.ulm.ac.id/index.php/klik/article/view/484
[27] M. J. Hernández-Molinos, A. J. Sánchez-García, R. E. Barrientos-Martínez, J. C. Pérez-Arriaga, and J. O. Ocharán-Hernández, “Software Defect Prediction with Bayesian Approaches,” Mathematics, vol. 11, no. 11, Jun. 2023, doi: 10.3390/math11112524.
[28] S. Putatunda and K. Rama, “A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting,” in 2019 15th International Conference on Information Processing: Internet of Things, ICINPRO 2019 - Proceedings, Apr. 2019. doi: 10.1109/ICInPro47689.2019.9092025.
[29] R. Marco, S. S. S. Ahmad, and S. Ahmad, “Bayesian Hyperparameter Optimization and Ensemble Learning for Machine Learning Models on Software Effort Estimation,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 3, pp. 419–429, 2022, doi: 10.14569/IJACSA.2022.0130351.
[30] D. Paul, A. K. Goswami, R. L. Chetri, R. Roy, and P. Sen, “Bayesian Optimization-Based Gradient Boosting Method of Fault Detection in Oil-Immersed Transformer and Reactors,” in IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 1910–1919. doi: 10.1109/TIA.2021.3134140.
[31] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization,” 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2020, pp. 146–151, 2020, doi: 10.1109/ISRITI51436.2020.9315360.
[32] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation Hyperparameter Optimization Framework,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631, 2019, doi: 10.1145/3292500.3330701.
[33] S. Mujilahwati, M. Sholihin, and R. Wardhani, “Optimasi Hyperparameter TensorFlow dengan Menggunakan Optuna di Python: Study Kasus Klasifikasi Dokumen Abstrak Skripsi,” Jurnal Media Informatika Budidarma, vol. 5, no. 3, p. 1084, 2021, doi: 10.30865/mib.v5i3.3090.
[34] S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” Journal of Mathematics Theory and Application, vol. 4, no. 1, pp. 21–26, 2022, doi: 10.31605/jomta.v4i1.1792.
[35] R. A. Nugroho et al., “Metrics Based Feature Selection for Software Defect Prediction,” 2020.
[36] M. Shah and N. Pujara, “Software Defects Prediction Using Machine Learning”.
[37] A. Alsaeedi and M. Z. Khan, “Software Defect Prediction Using Supervised Machine Learning and Ensemble Techniques: A Comparative Study,” Journal of Software Engineering and Applications, vol. 12, no. 05, pp. 85–100, 2019, doi: 10.4236/jsea.2019.125007.
[38] S. Elsa Suryana and B. Warsito, “PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK,” vol. 10, pp. 617–623, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
[39] M. Iqbal, “Deep Neural Network Untuk Prediksi Infeksi Covid-19 Berdasarkan Diagnosis Gejala,” 2021.