Dalam era digital yang semakin maju, interaksi antara manusia dan teknologi telah mengalami transformasi yang signifikan. Salah satu teknologi yang memainkan peran penting dalam perubahan ini adalah deteksi mimik wajah. Ekspresi wajah merupakan salah satu komponen kunci dalam komunikasi non-verbal manusia. Mimik wajah menyampaikan berbagai informasi emosional yang penting dalam interaksi sehari-hari. Deteksi mimik wajah menggunakan Teachable Machine menawarkan cara yang mudah dan cepat untuk mengembangkan aplikasi yang dapat mengenali dan menafsirkan ekspresi wajah. Teachable Machine adalah alat berbasis GUI web untuk membuat model klasifikasi pembelajaran mesin khusus tanpa memerlukan keahlian teknis khusus. Tujuan pembuatan Deteksi wajah menggunakan Teachable Machine adalah untuk mengerti cara kerja Pembelajaran Mesin untuk orang yang kurang mengerti dengan mudah
Skripsi-Rayhan
Jurnal-Rayhan
Ahorsu, D. K., Lin, C. Y., Imani, V., Saffari, M., Griffiths, M. D., & Pakpour, A. H. (2022). The Fear of COVID-19 Scale: Development and Initial Validation. International Journal of Mental Health and Addiction, 20(3). https://doi.org/10.1007/s11469-020-00270-8
Carney, M., Webster, B., Alvarado, I., Phillips, K., Howell, N., Griffith, J., Jongejan, J., Pitaru, A., & Chen, A. (2020). Teachable machine: Approachable web-based tool for exploring machine learning classification. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3334480.3382839
Daniel Miller, Laila Abed Rabho, Patrick Awondo, Maya de Vries, Marília Duque, Pauline Garvey, Laura Haapio-Kirk, Charlotte Hawkins, Alfonso Otaegui, Shireen Walton, & Xinyuan Wang. (2021). The Global Smartphone. UCL Press.
Eduardo Christianto, Alwin Melkie Sambul, & Feisy D. Kambey. (2021). Eduardo Christianto-Implementation of Convolutional Neural Network on Images for Starlings Classification. https://ejournal.unsrat.ac.id/index.php/informatika
Filus, K., & Domańska, J. (2023). Software vulnerabilities in TensorFlow-based deep learning applications. Computers and Security, 124. https://doi.org/10.1016/j.cose.2022.102948
Frobenius, A. C., Kuswanto, J., Ardiansyah, R., & Untoro, F. X. W. Y. (2023). Perancangan Prototipe Kunci Pintu Digital Berbasis IoT Menggunakan Metode HDLC. Jambura Journal of Electrical and Electronics Engineering, 5(2). https://doi.org/10.37905/jjeee.v5i2.20096
Gowrishankar S., & Veena A. (2018). Introduction to Python Programming.
Gudang Sejuta Ilmu. (2020, November 16). 26 Simbol flowchart Beserta Fungsi, Gambar, dan Keterangannya. Blogspot.Com. https://wawasandunialuas.blogspot.com/2017/11/26-simbol-flowchart-beserta-fungsi.html
Herrera, D., Alanis, A., Baltazar, R., & Velazquez, D. (2024). Intelligent Emotion Prediction System for Help in Telemedicine Therapies of Children with ASD. Communications in Computer and Information Science, 1937 CCIS. https://doi.org/10.1007/978-3-031-48930-3_20
Krichen, M. (2023). Convolutional Neural Networks: A Survey. Computers, 12(8). https://doi.org/10.3390/computers12080151
Malahina, E. A. U., Hadjon, R. P., & Bisilisin, F. Y. (2022). Teachable Machine: Real-Time Attendance of Students Based on Open Source System. The IJICS (International Journal of Informatics and Computer Science), 6(3), 140. https://doi.org/10.30865/ijics.v6i3.4928
Millstein, F. (2018). Deep Learning with Keras Beginner’s Guide To Deep Learning With Keras. In O’Reilly Media, Packt (pp. 6–6).
Ming, Y., Qian, H., & Guangyuan, L. (2022). CNN-LSTM Facial Expression Recognition Method Fused with Two-Layer Attention Mechanism. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/7450637
Ms. Manisha Urkude, Dr. S. B. Kishor, & Dr. S. G. Naranje. (2015). Face Recognition Technique- A Literature Survey on Face Recognition and Insight on Machine Recognition Using ( PDFDrive ).
Ni Nyoman Emang Smrti, I Putu Gd Sukenada, A., Ni Kadek, D. T. R., Adnan, A., & Pande Putu Ode, J. (2023). Flowgorithm Sebagai Penunjang Pembelajaran Algoritma dan Pemrograman. Jurnal Bangkit Indonesia, 12(1). https://doi.org/10.52771/bangkitindonesia.v12i1.218
Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1). https://doi.org/10.30871/jaic.v4i1.2017
Purwanto, A. (2020). Penerapan Algoritma Marr-Hilderth Untuk Pendeteksian Tepi Pada Citra CT-Scan. Bulletin of Information Technology (BIT), 1(1).
Rizal, R. A., Gulo, S., Della, O., Sihombing, C., Bernandustahi, A., Napitupulu, M., Gultom, A. Y., & Siagian, T. J. (2019). ANALISIS GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DALAM MENGENALI CITRA EKSPRESI WAJAH (Vol. 3, Issue 2). https://iocscience.org/ejournal/index.php/mantik/index
Russell, R. (2018). Machine Learning: Step-by-Step Guide To Implement Machine Learning Algorithms with Python (pp. 8–8).
Shoukat, S., & Akram, S. (2021). Journal of Innovative Computing and Emerging Technologies 1 | P a g e Fraud Detection System Using Facial Recognition Based On Google Teachable Machine for Banking Applications.
Stacy A. C. Nelson, & Khorram, S. (2019). Image Processing and Data Analysis with ERDAS IMAGINE® (pp. 167–167).
Tashildar, A., Shah, N., Gala, R., Giri, T., & Chavhan, P. (2020). APPLICATION DEVELOPMENT USING FLUTTER. International Research Journal of Modernization in Engineering Technology and Science @International Research Journal of Modernization in Engineering, 2(8).
Yuhandri, Y., Ramadhanu, A., & Syahputra, H. (2022). PENGENALAN TEKNOLOGI PENGOLAHAN CITRA DIGITAL (DIGITAL IMAGE PROCESSING) UNTUK SANTRI DI RAHMATAN LIL’ALAMIN INTERNATIONAL ISLAMIC BOARDING SCHOOL. Community Development Journal : Jurnal Pengabdian Masyarakat, 3(2). https://doi.org/10.31004/cdj.v3i2.5868
南七炼丹师. (2021, November 16). 浅析经典论文之Dropout. 知乎. https://zhuanlan.zhihu.com/p/433370879