PREDIKSI PENYAKIT DIABETES MENGGUNAKAN ALGORITMA RANDOM FOREST DAN SUPPORT VECTOR MACHINE (SVM)

research
  • 23 Oct
  • 2024

PREDIKSI PENYAKIT DIABETES MENGGUNAKAN ALGORITMA RANDOM FOREST DAN SUPPORT VECTOR MACHINE (SVM)

Novi Nikmatul Khasanah (19236057), Diabetes Disease Prediction Using Random
Forest Algorithm and Support Vector Machine (SVM)
Diabetes mellitus (DM) is a chronic degenerative disease caused by the body's
inability to produce or use insulin effectively, with hyperglycemia as the main
indicator. The prevalence of Diabetes mellitus in Indonesia is predicted to increase
significantly, ranking the country 4th in the world after the United States, India, and
China. This increase highlights the importance of early detection and accurate
classification. This study aims to compare the accuracy performance of two
classification algorithms, namely Random Forest and Support Vector Machine (SVM),
in predicting Diabetes mellitus. The dataset used consists of 100,000 records with class
0 (no diabetes) of 60,000 records and class 1 (diabetes) of 40,000 records, which are
divided into 90% training data and 10% testing data. This study found that Random
Forest has an accuracy of 97.47%, which is higher than SVM with an accuracy of
96.36%. This result shows that Random Forest is more effective in classification
strategy for Diabetes mellitus detection, by showing the superiority of Random Forest
in the accuracy performance metri.

Unduhan

 

REFERENSI

Anisa Fauziyah, Zahro As Sakinah, Mariyanto, & Dase Erwin Juansah. (2023).
INSTRUMEN TES DAN NON TES PADA PENELITIAN.
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi
Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi
Random Forest. SISTEMASI, 10(1), 163.
https://doi.org/10.32520/stmsi.v10i1.1129
ARYA ABIMANYU. (2023). KLASIFIKASI PENDERITA PENYAKIT DIABETES
BERBASIS DATA REKAM MEDIS MENGGUNAKAN SUPPORT VECTOR
MACHINE (SVM) SKRIPSI Oleh: ARYA ABIMANYU NIM. 17650059
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS SAINS DAN
TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG 2023.
Dyan Yuliana, Purwanto, & Catur Supriyanto. (2019). View of Klasifikasi Teks
Pengaduan Masyarakat Dengan Menggunakan Algoritma Neural Network.
Elma Sutriani, & Rika Octaviani. (2019). SEKOLAH TINGGI AGAMA ISLAM
NEGERI (STAIN) SORONG TUGAS RESUME UJIAN AKHIR SEMESTER
(UAS) TOPIK: ANALISIS DATA DAN PENGECEKAN KEABSAHAN DATA.
Hovi Sohibul, Asep Id Hadiana, & Fajri Rakhmat Umbara. (2022). Prediksi Penyakit
Diabetes Menggunakan Algoritma Support Vector Machine (SVM) INFORMASI
ARTIKEL ABSTRAK (Vol. 4, Issue 1). https://ejournal.unper.ac.id/index.php/informatics
Komang Sukendra, I., & Kadek Surya Atmaja, Mp. I. (2020). INSTRUMEN
PENELITIAN.
Lumbanraja, F. R., Lufiana, F., Heningtyas, Y., & Muludi, K. (n.d.). IMPLEMENTASI
SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PEDERITA
DIABETES MELLITUS 1,*) (Vol. 10, Issue 1).
M. Makbul. (2021). Metode Pengumpulan Data dan Instrumen Penelitian.
Siti Kalimah. (2022). KLASIFIKASI PENYAKIT DIABETES MENGGUNAKAN
METODE DECISION TREE DAN RANDOM FOREST.