Stroke merupakan penyakit yang terjadi pada pembuluh darah pada otak yang disebabkan karena kurangnya aliran oksigen ke otak sehingga menyebabkan kematian pada jaringan otak. Hal ini disebabkan karena usia yang sudah senja, memiliki riwayat penyakit darah tinggi, memiliki riwayat penyakit jantung, sering
merokok dan jarang berolahraga. Menurut data World Health Organization (WHO) bahwa penyakit stroke berada di peringkat ketiga pada penyakit berbahaya dan mematikan setelah jantung dan kanker. Untuk dapat memprediksi pasien terserang penyakit stroke perlu penanganan yang khusus salah satunya dengan Data Mining. Data mining merupakan salah satu cara menemukan hubungan
kecenderungan dengan memeriksa sekumpulan data yang besar dengan teknik pengenalan pola statistik dan matematika. Dalam memprediksi penyakit stroke menggunakan data mining terdapat class yang imbalance dan perlu ditindaklanjuti dengan menggunakan Synthetic Minority Oversampling Technique (SMOTE). Hasil dari penelitian menggunakan teknik SMOTE dengan enam model
diantaranya Random Forest, Naive Bayes, Decision Tree, K-Nearest Neighbor, Support Vector Machine dan Logistic Regression. Terdapat model terbaik yakni DAFTAR PUSTAKA
[1] A. S. Arifianto, M. Sarosa, and O. Setyawati, “Klasifikasi Stroke
Berdasarkan Kelainan Patologis dengan Learning Vector Quantization,”
EECCIS, vol. 8, no. 2, pp. 117–122, 2014.
[2] V. Chavda, B. Chaurasia, H. Deora, and G. E. Umana, “Chronic Kidney
disease and stroke: A Bi-directional risk cascade and therapeutic update,”
Brain Disord., vol. 3, no. March, p. 100017, 2021.
[3] I. Lishania, R. Goejantoro, and Y. N. Nasution, “Perbandingan Klasifikasi
Metode Naive Bayes dan Metode Decision Tree Algoritma (J48) pada
Pasien Penderita Penyakit Stroke di RSUD Abdul Wahab Sjahranie
Samarinda,” J. Eksponensial, vol. 10, no. 2, pp. 135–142, 2019.
[4] S. Mutmainah, “PENANGANAN IMBALANCE DATA PADA
KLASIFIKASI KEMUNGKINAN PENYAKIT STROKE,” SNATi, vol. 1,
no. 1, pp. 10–16, 2021.
[5] O. Ookeditse et al., “Healthcare professionals’ knowledge of modifiable
stroke risk factors: A cross-sectional questionnaire survey in greater
Gaborone, Botswana,” eNeurologicalSci, vol. 25, p. 100365, 2021.
[6] A. Puspitawuri, E. Santoso, and C. Dewi, “Diagnosis Tingkat Risiko
Penyakit Stroke Menggunakan Metode K-Nearest Neighbor dan Naïve
Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 4, pp.
3319–3324, 2019.
[7] S. Mendis, S. Davis, and B. Norrving, “Organizational Update The World
Health Organization Global Status Report on Noncommunicable Diseases
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
2014; One More Landmark Step in the Combat Against Stroke and
Vascular Disease,” Stroke, vol. 46, no. 5, p. e123, 2015.
[8] A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi
Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom
(Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020.
[9] Y. Prasetyo, “Terapi Latihan Di Air Bagi Penderita Stroke,” Medikora, no.
2. 2015.
[10] D. A. Putra, M. D. S. Sanapiah, A. I. Hanifah, and T. Afirianto, “SEED
(STROKE DISEASE EARLY DETECTION APPLICATION) –
RANCANG BANGUN APLIKASI MOBILE BERBASIS ANDROID
UNTUK MENDIAGNOSIS GEJALA DINI PENYAKIT STROKE
MENGGUNAKAN K-NEAREST NEIGHBOR (K-NN),” J. Teknol. Inf.
dan Ilmu Komput., vol. 6, no. 3, p. 287, 2019.
[11] D. W. Nugraha, A. Y. E. Dodu, and N. Chandra, “Klasifikasi Penyakit
Stroke Menggunakan Metode Naive Bayes Classifier (Studi Kasus Pada
Rumah Sakit Umum Daerah Undata Palu),” semanTIK, vol. 3, no. 2, pp.
13–22, 2017.
[12] G. Sailasya and G. L. A. Kumari, “Analyzing the Performance of Stroke
Prediction using ML Classification Algorithms,” Int. J. Adv. Comput. Sci.
Appl., vol. 12, no. 6, pp. 539–545, 2021.
[13] I. Purnama, R. Saputra, and A. WibowoIndra, “IMPLEMENTASI DATA
MINING MENGGUNAKAN CRISP-DM PADA SISTEM INFORMASI
EKSEKUTIF DINAS KELAUTAN DAN PERIKANAN PROVINSI
JAWA TENGAH,” 2017.
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[14] A. Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means
Clustering,” J. Ilmu Komput., pp. 1–12, 2016.
[15] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on
applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, no.
2019, pp. 526–534, 2021.
[16] D. Feblian and D. U. Daihani, “IMPLEMENTASI MODEL CRISP-DM
UNTUK MENENTUKAN SALES PIPELINE PADA PT X,” J. Tek. Ind.,
pp. 1–12, 2015.
[17] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree
Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no.
01, pp. 20–28, 2021.
[18] C. Chen, L. Geng, and S. Zhou, “Design and implementation of bank CRM
system based on decision tree algorithm,” Neural Comput. Appl., vol. 33,
no. 14, pp. 8237–8247, 2021.
[19] S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve Bayes
algorithm,” Knowledge-Based Syst., vol. 192, no. xxxx, p. 105361, 2020.
[20] Z. Wu, W. Lin, Z. Zhang, A. Wen, and L. Lin, “An Ensemble Random
Forest Algorithm for Insurance Big Data Analysis,” Proc. - 2017 IEEE Int.
Conf. Comput. Sci. Eng. IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput.
CSE EUC 2017, vol. 1, pp. 531–536, 2017.
[21] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis
of k-nearest neighbor and modified k-nearest neighbor algorithm for data
classification,” Proc. - 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr.
Eng. ICITISEE 2017, vol. 2018-Janua, pp. 294–298, 2018.
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[22] D. I. Pushpita Anna Octaviani, Yuciana Wilandari, “Penerapan Metode
SVM Pada Data Akreditasi Sekolah Dasar Di Kabupaten Magelang,” J.
Gaussian, vol. 3, no. 8, pp. 811–820, 2014.
[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, no. June, pp. 321–357, 2002.
[24] N. Sakinah, T. Badriyah, and I. Syarif, “Analisis Kinerja Algoritma Mesin
Pembelajaran untuk Klarifikasi Penyakit Stroke Menggunakan Citra CT
SCAN,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, p. 833, 2020.
[25] S. Ashokan, S. G. Narayanan, V. Bs, and P. G. Anand, “An Effective
Stroke Prediction System using Predictive Models,” Int. Res. J. Eng.
Technol., pp. 3979–3985, 2020.
[26] R. Bhavana, “Stroke Prediction using Machine Learning Algorithms,” Int.
J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VI, pp. 1518–1523, 2021Random Forest dengan dengan tingkat accuracy 90%
FIle Tesis Eka Herdit Juningsih
DAFTAR PUSTAKA
[1] A. S. Arifianto, M. Sarosa, and O. Setyawati, “Klasifikasi Stroke
Berdasarkan Kelainan Patologis dengan Learning Vector Quantization,”
EECCIS, vol. 8, no. 2, pp. 117–122, 2014.
[2] V. Chavda, B. Chaurasia, H. Deora, and G. E. Umana, “Chronic Kidney
disease and stroke: A Bi-directional risk cascade and therapeutic update,”
Brain Disord., vol. 3, no. March, p. 100017, 2021.
[3] I. Lishania, R. Goejantoro, and Y. N. Nasution, “Perbandingan Klasifikasi
Metode Naive Bayes dan Metode Decision Tree Algoritma (J48) pada
Pasien Penderita Penyakit Stroke di RSUD Abdul Wahab Sjahranie
Samarinda,” J. Eksponensial, vol. 10, no. 2, pp. 135–142, 2019.
[4] S. Mutmainah, “PENANGANAN IMBALANCE DATA PADA
KLASIFIKASI KEMUNGKINAN PENYAKIT STROKE,” SNATi, vol. 1,
no. 1, pp. 10–16, 2021.
[5] O. Ookeditse et al., “Healthcare professionals’ knowledge of modifiable
stroke risk factors: A cross-sectional questionnaire survey in greater
Gaborone, Botswana,” eNeurologicalSci, vol. 25, p. 100365, 2021.
[6] A. Puspitawuri, E. Santoso, and C. Dewi, “Diagnosis Tingkat Risiko
Penyakit Stroke Menggunakan Metode K-Nearest Neighbor dan Naïve
Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 4, pp.
3319–3324, 2019.
[7] S. Mendis, S. Davis, and B. Norrving, “Organizational Update The World
Health Organization Global Status Report on Noncommunicable Diseases
2014; One More Landmark Step in the Combat Against Stroke and
Vascular Disease,” Stroke, vol. 46, no. 5, p. e123, 2015.
[8] A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi
Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom
(Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020.
[9] Y. Prasetyo, “Terapi Latihan Di Air Bagi Penderita Stroke,” Medikora, no.
2. 2015.
[10] D. A. Putra, M. D. S. Sanapiah, A. I. Hanifah, and T. Afirianto, “SEED
(STROKE DISEASE EARLY DETECTION APPLICATION) –
RANCANG BANGUN APLIKASI MOBILE BERBASIS ANDROID
UNTUK MENDIAGNOSIS GEJALA DINI PENYAKIT STROKE
MENGGUNAKAN K-NEAREST NEIGHBOR (K-NN),” J. Teknol. Inf.
dan Ilmu Komput., vol. 6, no. 3, p. 287, 2019.
[11] D. W. Nugraha, A. Y. E. Dodu, and N. Chandra, “Klasifikasi Penyakit
Stroke Menggunakan Metode Naive Bayes Classifier (Studi Kasus Pada
Rumah Sakit Umum Daerah Undata Palu),” semanTIK, vol. 3, no. 2, pp.
13–22, 2017.
[12] G. Sailasya and G. L. A. Kumari, “Analyzing the Performance of Stroke
Prediction using ML Classification Algorithms,” Int. J. Adv. Comput. Sci.
Appl., vol. 12, no. 6, pp. 539–545, 2021.
[13] I. Purnama, R. Saputra, and A. WibowoIndra, “IMPLEMENTASI DATA
MINING MENGGUNAKAN CRISP-DM PADA SISTEM INFORMASI
EKSEKUTIF DINAS KELAUTAN DAN PERIKANAN PROVINSI
JAWA TENGAH,” 2017.
[14] A. Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means
Clustering,” J. Ilmu Komput., pp. 1–12, 2016.
[15] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on
applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, no.
2019, pp. 526–534, 2021.
[16] D. Feblian and D. U. Daihani, “IMPLEMENTASI MODEL CRISP-DM
UNTUK MENENTUKAN SALES PIPELINE PADA PT X,” J. Tek. Ind.,
pp. 1–12, 2015.
[17] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree
Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no.
01, pp. 20–28, 2021.
[18] C. Chen, L. Geng, and S. Zhou, “Design and implementation of bank CRM
system based on decision tree algorithm,” Neural Comput. Appl., vol. 33,
no. 14, pp. 8237–8247, 2021.
[19] S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve Bayes
algorithm,” Knowledge-Based Syst., vol. 192, no. xxxx, p. 105361, 2020.
[20] Z. Wu, W. Lin, Z. Zhang, A. Wen, and L. Lin, “An Ensemble Random
Forest Algorithm for Insurance Big Data Analysis,” Proc. - 2017 IEEE Int.
Conf. Comput. Sci. Eng. IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput.
CSE EUC 2017, vol. 1, pp. 531–536, 2017.
[21] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis
of k-nearest neighbor and modified k-nearest neighbor algorithm for data
classification,” Proc. - 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr.
Eng. ICITISEE 2017, vol. 2018-Janua, pp. 294–298, 2018.
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[22] D. I. Pushpita Anna Octaviani, Yuciana Wilandari, “Penerapan Metode
SVM Pada Data Akreditasi Sekolah Dasar Di Kabupaten Magelang,” J.
Gaussian, vol. 3, no. 8, pp. 811–820, 2014.
[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, no. June, pp. 321–357, 2002.
[24] N. Sakinah, T. Badriyah, and I. Syarif, “Analisis Kinerja Algoritma Mesin
Pembelajaran untuk Klarifikasi Penyakit Stroke Menggunakan Citra CT
SCAN,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, p. 833, 2020.
[25] S. Ashokan, S. G. Narayanan, V. Bs, and P. G. Anand, “An Effective
Stroke Prediction System using Predictive Models,” Int. Res. J. Eng.
Technol., pp. 3979–3985, 2020.
[26] R. Bhavana, “Stroke Prediction using Machine Learning Algorithms,” Int.
J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VI, pp. 1518–1523, 2021