Rapid technological developments, making the need for information and communication increase. Competition between telecommunications companies to get customers leads to churn. Where the churn phenomenon is a major problem in companies with large numbers of customers. Churn is the transfer of customers from one provider to another. But in this churn problem, churn usually has unbalanced data rather than non-churn, so it is necessary to deal with the majority (non-churn) and minority (churn) classes. The method used in this study is the Underbagging method to handle data imbalance combined with the C4.5 classification method. The data used has 21 attributes with a total of 3333 data. The number of data churn is 483 records and non-churn data is 2,850 records. This study produces the highest accuracy value of 90.74%.
Keywords : Telecommunication Customer churn, Underbagging, C4.5
Tesis_Tri Wahyuni
Aggarwal, Charu C. (2015). Data Mining. New York: Springer
Attenberg, J., & Ertekin, S. (2013). Class Imbalance and Active Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 101-149). New Jersey: John Wiley & Sons.
Brown, Meta S. (2014). Data Mining for Dummies a Wiley Brand. Hoboken: John Wiley & Sons, Inc.
Dubey, R., Zhou, J., Wang, Y., Thompson, P. M., & Ye, J. (2014). Analysis of Sampling Techniques for Imbalanced Data: An n = 648 ADNI Study. Neuro Image, 220–241.
Dulkhatif, Andi Tri Haryono, Moh Mukeri Warso (2016). Pengaruh Kualitas Pelayanan, Kepuasan Pelanggan dan Lokasi Terhadap Loyalitas Pelanggan pada Penyedia Jasa Internet Study PT Noken Mulia Tama Semarang. Journal Of Managenent, Volume 2 No.2 Maret 2016
Fikrieabdillah (2016) Penggunaan Deep Learning untuk Prediksi Churn pada Jaringan telekomunikasi Mobile. E-Proceeding of Engineering Vol.3 No.2 Agustus 2016 (3882-3888)
Gao, K., Khoshgoftaar, T., & Wald , R. (2014). Combining Feature Selection and Ensemble Learning for Software Quality Estimation. Twenty-SeventhInternational Florida Artificial Intelligence Research society Conference (pp. 47-52).
Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Berlin: Springer-Verlag.
Guo, Huaping, Haiyan Liu, Chang-an Wu, Wei Liu and Wei She (2018). Ensemble of Rotation Trees for Imbalanced Medical Datasets. Journal of Healthcare Engineering (1-9). Volume 2018.
Han, Jiawei, dan Micheline Kamber dan Jian Pei. (2012). Data Mining Concepts and Techniques. Morgan Kaufmann Publisher.
Hanifa, Tesha Tasmalaila, Adiwijaya dan Said Al-Faraby (2017). Analisis Churn Prediction pada Data Pelanggan PT. Telekomunikasi dengan Logistic Regression dan Underbagging. e-Proceeding of Engineering Vol.4 No.2 Agustus 2017 (3210-3225)
Herawati, Meyrina, Imam Mukhlash, Inu L. Wibowo (2016). Prediksi Customer Churn Menggunakan Algoritma Fuzzy Iterative Dichotomiser 3. Limits. Vol.13, No.1 Mei 2016 (23-26)
Hermawati, Fajar Astuti. (2013). Data Mining. Yogyakarta:ANDI
Hidayatullah, Ahmad Fathan, Alan Dwi Prasetyo, Datik Puspita Sari, Intan Pratiwi (2014). Analisis Kualitas Data dan Klasifikasi Data Pasien Kanker. Seminar Nasional Informatika Medis (SNIMed) V 2014 (38-47).
Huang, Bingquan, Mohand Tahar Kechadi, Brian Buckley (2012). Customer Churn Prediction in Telecommunications. Expert Systems with Applications 39 (1414-1425)
Idris, Adnan, Muhammad Rizwan, Asifullah Khan (2012). Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies. Computers and Electrical Engineering 38 (1808-1819).
Kamus Besar Bahasa Indonesia. Pengertian Pelanggan. 13 Agustus 2018. https://kbbi.kemdikbud.go.id/entri/pelanggan
Kaur, Manpreet dan Dr. Prerna Mahajan (2015). Churn Prediction in Telecom Industry Using R. International Journal of Engineering and Technical Research (IJETR) Vol.3, Issue 5 May 2015 (46-53)
Keramati A., et.al., (2014). Improved churn prediction in telecommunication industry using data mining techniques. Applied Soft Computing 24 (994-1012)
Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble learning on selected features. Information and Software Technology, 58, 388–402. https://doi.org/10.1016/j.infsof.2014.07.005
Liu, X.-Y., & Zhou, Z.-H. (2013). Ensemble Methods for Class Imbalance Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 61-82). New Jersey: John Wiley & Sons.
López, V., Fernández, A., & Herrera, F. (2014). On the Importance of the Validation Technique for Classification with Imbalanced Datasets: Addressing Covariate Shift when Data is Skewed. Information Sciences, 113. doi:10.1016/j.ins.2013.09.038.
Lorena, S., Zarman, W., & Hamidah, I. (2014). Analisis Dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Memprediksi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik. Prosiding Seminar Nasional Aplikasi Sains Dan Teknologi (SNAST), (November), 263–272. https://doi.org/10.5829/idosi.weasj.2015.6.2.22162
Putler, Daniel S, dan Robert E Krider. (2015). Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R. CRC Press. USA. ISBN-13:978-1-4987-5970-0 (EPUB)
Sudarsono, Aji (2016) Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu). Jurnal Media Infotama (61-69). Vol. 12 No. 1, Februari 2016.
Suharso, Wildan dan Arif Djunaidy (2013). Analisis Customer Churn Menggunakan Bayesian Belief Network (Studi Kasus: Perusahaan Layanan Internet). Jurnal Sistem Informasi. Olume 4 Nomor 5, September 2013 (323-335)
Wardani, Ni Wayan, Gede Rasben Dantes, Gede Indrawan (2018). Prediksi Customer Churn Dengan Algoritma Decision Tree C4.5 Berdasarkan Segmentasi Pelanggan Pada Perusahaan Retail. Jurnal Resistor Vol. 1 No.1 April 2018 (16-24)
Weiss, G. M. (2013). Foundations of Imbalanced Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 1341). New Jersey: John Wiley & Sons.
Witten, H. I., Frank, E., & Hall, M. A. (2011). Data Mining Pratical Mechine Learning Tools And Technique. Burlington: Elsevier Inc.
Yunus, M., Dahlan, H. S., & Santoso, P. B. (2014). SPK Pemilihan Calon Pendonor Darah Potensial dengan Algoritma C4.5 dan Fuzzy Tahani. Jurnal EECCIS, Vol. 8 No.(1), 47–54.