Penyakit diabetes adalah salah satu penyakit yang dapat menyebabkan komplikasi bahkan dapat menyebabkan kematian. Saat ini penyakit diabetes semakin lama semakin meningkat jumlah penderitanya. Banyak penelitian yang menggunakan metode support vector machines dalam memprediksi penyakit diabetes tetapi nilai akurasi yang dihasilkan masih kurang akurat. Dalam penelitian ini dibuatkan model algoritma support vector machines dan model algoritma suppor vector machines berbasis Particle Swarm Optimization untuk mendapatkan rule dalam memprediksi penyakit diabetes dan memberikan nilai akurasi yang lebih akurat. Setelah dilakukan pengujian dengan dua model yaitu Algoritma support vector machines dan support vector machines berbasis Particle Swarm Optimization maka hasil yang didapat adalah algoritma sehingga didapat pengujian dengan menggunakan support vector machines dimana didapat nilai accuracy adalah 74.21 % dan nilai AUC adalah 0.758, sedangkan pengujian dengan menggunakan support vector machines berbasis Particle Swarm Optimization didapatkan nilai accuracy 77.36% dan nilai AUC adalah 0.765 dengan tingkat diagnosa fair classification. Sehingga kedua metode tersebut memiliki perbedaan tingkat akurasi yaitu sebesar 3.15% dan perbedaan nilai AUC sebesar 0,017.
Abraham, A., Grosan, C., & Ramos, V. (2006). Swarm Intelligence In Data Mining. Verlag Berlin Heidelberg: Springer.
Alpaydın, E. (2010). Introduction To Machine Learning. London: Massachusetts Institute Of Technology.
Aydin, I., Karakose, M., & Akin, E. (2011). A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Computer Engineering Department , 120-129.
Bellazzi, R., & Zupanb, B. (2008). Predictive Data Mining In Clinical Medicine: Current Issues And And Guidelines. International Journal Of MedicalInformatics 7 7 , 81–97.
Berndtssom, M., Hansson, J., Olsson, B., & Lundell, B. (2008). A Guide For Students In Computer Science And Information Systems. London: Springer.
Bramer, M. (2007). Principles Of Data Mining. Verlag London: Springer.
Bromuri, S., Schumacher, M. I., & Ruiz, J. (2011). Monitoring Gestational Diabetes Mellitus With Cognitive Agents And Agent Environments. Acm
International Conferences On Web Intelligence And Intelligent Agent Technology , 409-414.
Burges, C. J. (1998). A Tutorial On Support Vector Machines For Pattern Recognition. Boston: Kluwer Academic Publishers.
Dawson, C. W. (2009). Projects In Computing And Information System A Student's Guide. England: Addison-Wesley.
Dong, Y., Xia, Z., Tu, M., & Xing, G. (2007). An Optimization Method For Selecting Parameters In Support Vector Machines. Sixth International
Conference On Machine Learning And Applications , 1 Fei, S. W., Miao, Y. B., & Liu, C. L. (2009). Chinese Grain Production
Forecasting Method Based On Particle Swarm Optimization-Based Support Vector Machine. Recent Patents On Engineering 2009 , 3, 8-12.
Gomes, T. A., Prudenci, R. B., Soares, C., Rossi, A. L., & Andre, C. (2012).
Combining meta-learning and search techniques to select parameters for support vectormachines. T.A.F. Gomesetal./Neurocomputing , 3–13.
Gorunescu, F. (2011). Data Mining Concepts,Models And Techniques. Verlag Berlin Heidelberg: Springer.
Han, J., Rodriguze, J. C., & Beheshti, M. (2008). Diabetes Data Analysis And Prediction Model Discovery Using Rapidminer. Second International
Conference On Future Generation Communication And Networking , 98. Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. Untied States
Of America: A John Wiley & Sons Inc Publication.
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
Huang, K., Yang, H., King, I., & Lyu, M. (2008). Machine Learning Modeling
Data Locally And Globally. Berlin Heidelberg: Zhejiang University Press, Hangzhou And Springer-Verlag Gmbh.
Iancu, E., Iancu, I., & Sfredel, V. (2010). Predictive Control Of Blood Glucose In Diabetes Mellitus Patients. International Conference On Automation, Quality And Testing, Robotics , 1-6.
Iancu, I., Mota, M., & Iancu, E. (2008). Method For The Analysing Of Blood Glucose Dynamics In Diabetes Mellitus Patients. International Conference On Automation, Quality And Testing, Robotics , 60-65.
Larose, D. T. (2007). Data Mining Methods And Models. New Jersey: A John Wiley & Sons.
Lin, S.-W., Shiue, Y.-R., Chen, S.-C., & Cheng, H.-M. (2009). Applying enhanced data mining approaches in predicting bank performance: A case of