PENERAPAN K-MEANS DAN K-MEDOIDS BERBASIS RFM PADA SEGMENTASI PELANGGAN DI MASA PANDEMI COVID-19

research
  • 15 Sep
  • 2022

PENERAPAN K-MEANS DAN K-MEDOIDS BERBASIS RFM PADA SEGMENTASI PELANGGAN DI MASA PANDEMI COVID-19

Merebaknya virus CORONA di Indonesia pada awal Maret 2020 telah membuat keresahan terutama dalam dunia usaha. Dampak yang ditimbulkan akibat virus ini membuat sebagian usaha kecil maupun menengah keatas gulung tikar. Dalam situasi seperti ini diperlukan strategi pemasaran yang tepat untuk dapat mempertahankan dan meningkatkan loyalitas pelanggan. Tujuan penelitian ini yaitu melakukan segmentasi pelanggan PT Megadaya Maju Selaras berdasarkan karakteristiknya dengan membandingkan algoritma K-Means dan K-Medoids berbasis RFM sebagai atribut yang digunakan dalam penelitian. Dataset yang digunakan berasal dari data transaksi pembelian pelanggan PT Megadaya Maju Selaras. Hasil penelitian menunjukan algoritma K-Means mempunyai nilai DBI lebih kecil dari K-Medoids. Data keseluruhan terbagi menjadi 4 segmen yaitu superstar, typical customer, occational customer dan dormant customer. Data sebelum pandemi terbagi menjadi 2 segmen yaitu typical customer dan  superstar. Data setelah pandemi terbagi menjadi 5 segmen yaitu typical customer, occational customer, golden customer, dormant customer dan superstar.

 

 

 

Unduhan

  • 1 Tesis.pdf

    Tesis

    •   diunduh 101x | Ukuran 4,391 KB

 

REFERENSI

 

DAFTAR REFERENSI

 

 

 

[1]      A. Zuniawan et al., “The Covid-19 Pandemic Impact On Industries Performance: An Explorative Study Of Indonesian Companies,” J. Crit. Rev., vol. 7, no. 15, p. 2020, 2020.

 

[2]      J. Zeniarja, A. Luthfiarta, F. I. Komputer, U. Dian, and N. Semarang, “Prediksi Churn dan Segmentasi Pelanggan Menggunakan Backpropagation Neural Network,” Techno.COM, vol. 14, no. 1, pp. 49–54, 2015.

 

[3]      P. Ekspor and C. A. Kurnia, “Dampak Pandemi Covid-19 Dan Perubahan Pola Administrasi Terhadap Pelaku Umkm Ekspor Dan Impor (Studi terhadap Pengusaha Ekspor dan Impor di Banda Aceh),” vol. 6, no. 1, pp. 1–12, 2020.

 

[4]      I. Maryani and D. Riana, “Clustering and profiling of customers using RFM for customer relationship management recommendations,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, pp. 2–7, 2017, doi: 10.1109/CITSM.2017.8089258.

 

[5]      U. S. A. Bayu Adhi Tama*, Fakultas Ilmu Komputer, “Penetapan Strategi Penjualan Menggunakan,” J. Generic, vol. 5, no. 1, pp. 35–38, 2010.

 

[6]      D. J. Hand, “Principles of data mining,” Drug Saf., vol. 30, no. 7, pp. 621–622, 2007, doi: 10.2165/00002018-200730070-00010.

 

[7]      Y. Ramamohan, K. Vasantharao, C. K. Chakravarti, and  a S. K. Ratnam, “A Study of Data Mining Tools in Knowledge Discovery Process,” Int. J. Soft Comput. Eng., vol. 2, no. 3, pp. 191–194, 2012.

 

[8]      I. Maryani, D. Riana, R. D. Astuti, A. Ishaq, Sutrisno, and E. A. Pratama, “Customer segmentation based on RFM model and clustering techniques with K-means algorithm,” Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, pp. 1–6, 2018, doi: 10.1109/IAC.2018.8780570.

 

[9]      P. Wongchinsri and W. Kuratach, “A survey - Data mining frameworks in credit card processing,” in 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2016, 2016, pp. 1–6, doi: 10.1109/ECTICon.2016.7561287.

 

[10]    R. D. F. Ruly, Purbandini, and E. Wuryanto, “Penerapan Clustering K-Means Pada Customer Segmentation Berbasis Recency Frequency Monetary ( Rfm ) ( Studi Kasus : Pt . Sinar Kencana Intermoda Surabaya ),” Semin. Nas. Mat. Dan Apl., pp. 418–427, 2017.

 

[11]    S. Idowu, “Customer Segmentation Based on RFM Model Using K-Means , Hierarchical and Fuzzy C- Means Clustering Algorithms,” no. June, 2020, doi: 10.13140/RG.2.2.15379.71201.

 

[12]    Y. S. Patel, D. Agrawal, and L. S. Josyula, “The RFM-based ubiquitous framework for secure and efficient banking,” 2016 1st Int. Conf. Innov. Challenges Cyber Secur. ICICCS 2016, no. Iciccs, pp. 283–288, 2016, doi: 10.1109/ICICCS.2016.7542333.

 

[13]    S. H. Shihab, S. Afroge, and S. Z. Mishu, “RFM Based Market Segmentation Approach Using Advanced K-means and Agglomerative Clustering: A Comparative Study,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 7–9.

 

[14]    Y. S. Cho, S. C. Moon, S. C. Noh, and K. H. Ryu, “Implementation of personalized recommendation system using k-means clustering of item category based on RFM,” 2012 IEEE 6th Int. Conf. Manag. Innov. Technol. ICMIT 2012, pp. 378–383, 2012, doi: 10.1109/ICMIT.2012.6225835.

 

[15]    J. Chen, J. Li, and S. Lin, “Client classification of agricultural products e-commerce by RFM model,” Proc. - 8th Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2018, pp. 836–840, 2018, doi: 10.1109/IMCCC.2018.00178.

 

[16]    M. Aryuni, E. Didik Madyatmadja, and E. Miranda, “Customer Segmentation in XYZ Bank Using K-Means and K-Medoids Clustering,” Proc. 2018 Int. Conf. Inf. Manag. Technol. ICIMTech 2018, no. September, pp. 412–416, 2018, doi: 10.1109/ICIMTech.2018.8528086.

 

[17]    M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.

 

[18]    F. M. Javed Mehedi Shamrat, Z. Tasnim, I. Mahmud, N. Jahan, and N. I. Nobel, “Application of k-means clustering algorithm to determine the density of demand of different kinds of jobs,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 2550–2557, 2020.

 

[19]    A. Abriyanto and N. Damastuti, “Segmentasi Mahasiswa Dengan ‘ Unsupervised ’ Algoritma Guna Membangun Strategi Marketing Penerimaan Mahasiswa,” Insa. Comtech Inf. Sci. Comput. Technol. J., vol. 4, no. 2, pp. 10–18, 2019.

 

[20]    B. Yi, F. Yang, H. Qiao, and C. Xu, “An Improved Initialization Center Algorithm for K-means Clustering,” in International Conference on Computational Intelligence and Software Engineering, 2010, no. 1, pp. 1–4.

 

[21]    M. Aryuni and E. Miranda, “Customer Segmentation in XYZ Bank using K-Means and K-Medoids Clustering,” in 2018 International Conference on Information Management and Technology (ICIMTech), 2018, no. 1, pp. 412–416.

 

[22]    S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan CUBIC Clustering Criterion,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 211–218, 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.

 

[23]    R. D. Ramadhani and D. J. Ak, “Evaluasi K-Means dan K-Medoids pada Dataset Kecil,” Seminar Nasional Informatika dan Aplikasinya, no. September. pp. 20–24, 2017.

 

[24]    N. Arbin, N. S. Suhaimi, N. Z. Mokhtar, and Z. Othman, “Comparative analysis between k-means and k-medoids for statistical clustering,” Proc. - AIMS 2015, 3rd Int. Conf. Artif. Intell. Model. Simul., pp. 117–121, 2016, doi: 10.1109/AIMS.2015.82.

 

[25]    P. E. Prakasawati, Y. H. Chrisnanto, and A. I. Hadiana, “Segmentasi Pelanggan Berdasarkan Produk Menggunakan Metode K- Medoids,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 335–339, 2019, doi: 10.30865/komik.v3i1.1610.

 

[26]    C. W. Utami, Manajemen Ritel : Strategi dan Implementasi OperasionalBisnis Ritel Moderen DI Indonesia, Second. Jakarta: Salemba Empat, 2010.

 

[27]    A. Supriatna and H. Budianto, “Penerapan Customer Relationship Management (Crm) Sebagai Upaya Meningkatkan Kepuasan Dan Loyalitas Pelanggan Pada Gelora Mukti Sport Berbasis Web,” J. Nuansa Inform., vol. 13, no. 2, pp. 11–18, 2019.

 

[28]    N. P. P. Yuliari, I. K. G. D. Putra, and N. K. D. Rusjayanti, “Customer Segmentation Through Fuzzy C-Means And Fuzzy Rfm Method,” J. Theor. Appl. Inf. Technol., vol. 78, no. 3, pp. 380–385, 2015.

 

[29]    H. Zare, R. Behzadi, and S. Bemani, “Investigate the effect of customer relationship management on customers ’ loyalty and satisfaction ( Case study : Shiraz city Refah chain stores ),” vol. 3, no. 02, pp. 21–25, 2015.

 

[30]    F. Buttle and S. Maklan, Customer Relationship Management: Concepts and Technologies Fourth Edition. 2019.

 

[31]    K. Tsiptsis and A. Chorianopoulos, Data Mining Techniques in CRM: Inside Customer Segmentation, Firs. United Kingdom: John Wiley & Sons, Ltd, 2009.

 

[32]    B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” JUTEI, vol. 1, no. 2, pp. 23–32, 2018, doi: 10.21460/jutei.2017.21.76.

 

[33]    N. Hill and J. Alexander, The Handbook of Customer Satisfaction and Loyalty Measurement, 3nd Revise. New York: Gower Publishing Ltd;, 2006.

 

[34]    K. Tsiptsis and A. Chorianopoulos, Data Mining Techniques in CRM Inside Customer Segmentation. West Sussex: Jonh Wiley & Son Ltd, 2009.

 

[35]    L. P. Zhao and Q. L. Shu, “Data mining application in banking-customer relationship management,” ICCASM 2010 - 2010 Int. Conf. Comput. Appl. Syst. Model. Proc., vol. 6, no. Iccasm, pp. 124–126, 2010, doi: 10.1109/ICCASM.2010.5619002.

 

[36]    L. Qi and S. Zhang, “The Development of Customer Relationship Management System Based on Rough Set,” Commun. Comput. Inf. Sci., vol. 315, pp. 328–333, 2012, doi: 10.1007/978-3-642-34240-0_43.

 

[37]    M. Bramer, Principles of Data Mining, Third Edit. London: Springer, 2016.

 

[38]    E. S. Han and A. goleman, daniel; boyatzis, Richard; Mckee, “済無No Title No Title,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.

 

[39]    E. W. T. Ngai, L. Xiu, and D. C. K. Chau, “Expert Systems with Applications Application of data mining techniques in customer relationship management : A literature review and classification,” Expert Syst. Appl., vol. 36, no. 2, pp. 2592–2602, 2009, doi: 10.1016/j.eswa.2008.02.021.

 

[40]    E. Kurniawan, “Analisa Data Rekam Medis Menggunakan Teknik Data Mining Association Rules Dengan Algoritma Clustering .pdf,” pp. 1–7.

 

[41]    M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means Clustering,” J. Nas. Inform. dan Teknol. Jar., vol. 2, no. 1, pp. 60–67, 2017.

 

[42]    N. Butarbutar, A. P. Windarto, D. Hartama, and Solikhun, “Komparasi Kinerja Algoritma Fuzzy C-Means Dan K-Means Dalam Pengelompokan Data Siswa Berdasarkan Prestasi Nilai Akademik Siswa,” JURASIK (Jurnal Ris. Sist. Inf. Tek. Inform., vol. 1, no. 1, pp. 46–55, 2016.

 

[43]    D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

 

[44]    Y. S.Thakare and S. B. Bagal, “Performance Evaluation of K-means Clustering Algorithm with Various Distance Metrics,” Int. J. Comput. Appl., 2015, doi: 10.5120/19360-0929.

 

[45]    B. Jumadi Dehotman Sitompul, O. Salim Sitompul, and P. Sihombing, “Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012015.

 

[46]    S. H. Shihab, S. Afroge, and S. Z. Mishu, “RFM Based Market Segmentation Approach Using Advanced K-means and Agglomerative Clustering: A Comparative Study,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, pp. 1–4, 2019, doi: 10.1109/ECACE.2019.8679376.

 

[47]    P. S. Kurniawan, “Perancangan Data Mining untuk Analisis Kriteria Nasabah Kredit yang Potensial dan Manfaatnya untuk Customer Relationship Management Perbankan,” J. Account. Invest., vol. 1, no. 11, pp. 155–174, 2015, doi: 10.18196/JAI-2015.0040.