2018 6th International Conference On Cyber And IT Service Management (CITSM)

Convention Hall, Inna Parapat Hotel
Phone: (0625) 41012
Email : contact.citsm@uinjkt.ac.id
Website : http://citsm.id/
August 7-9, 2018

ISBN : 978-1-5386-5433-0
IEEE Catalog Number : CFP1837Z-PRT
PREFACE

Assalaamu ‘alaykum warahmatullahi wabarakaatuh,

The CITSM 2018 is in the general area of communication and information technology. It provides a forum for presenting and discussing the latest innovations, results and developments in IT Management & organizations, IT Applications, Cyber & IT Security, and ICT. The main objective of this conference is to provide a forum for engineers, academia, scientist, industry, and researchers to present the result of their research activities in the field of Computer and Information Technology. The primary focus of the conference is to create an effective medium for institutions and industries to share ideas, innovations, and problem solving techniques.

There are 282 papers submission and only 150 papers are accepted and 147 papers have been registered and presented. Accepted papers will be presented in one of the regular sessions and will be published in the conference proceedings volume. All accepted papers are submitted to IEEEXplore. IEEE Conference Number: # 43622. Catalog Number: CFP1837Z-PRT, ISBN: 978-1-5386-5433-0, CFP1837Z-USB, ISBN: 978-1-5386-5434-7.

On behalf of the CITSM organizers, we wish to extend our warm welcome and would like to thank for the all Keynote Speakers, Reviewers, authors, and Committees, for their effort, guidance, contribution and valuable support. Last but not least, thanks to all lecturers and staffs of the Faculty of Science & Technology, Syarif Hidayatullah Jakarta State Islamic University and Universitas Potensi Utama-Medan and other parties that directly and indirectly make this event successful.

Wa billahi taufiq wal hidaayah.
Wallahul muwaffiq ila aqwamit-tharieq.
Wasalaamu ‘alaykumu warahmatullahi wabarakaatuh.

Husni Teja Sukmana
(Organizing Chair)
COMMITTEES

HONORARY CHAIRS
Lukman Hakim Saefuddin, Religious Affairs Minister of the Republic of Indonesia
Rudi Antara, ICT Minister of the Republic of Indonesia
Dede Rosyada, Rector of State Islamic University of Syarif Hidayatullah Jakarta
Bob Subhan Riza, Potensi Utama University

STEERING COMMITTEE
Rika Rosnelly, Potensi Utama University, Indonesia
Agus Salim, State Islamic University of Syarif Hidayatullah Jakarta, Indonesia
Ismail Khalil, Johannes Kepler University, Austria
Tri Haryanto, IT Best Practice, Indonesia
Djoko Soetarno, Coris, Indonesia
Agus Setiawan, Multimatics, Indonesia
Abdul Wahab Abdul Rahman, International Islamic University Malaysia, Malaysia
Sri Hartati, IndoCEISS, Indonesia Computer Electronic and Instrumentation Support Society
Suryadiputra Liawatimena, IEEE Indonesian Section Computer Society Chapter, Bina Nusantara University
Nur Inayah, State Islamic University of Syarif Hidayatullah Jakarta, Indonesia
Syopiansyah Jaya Putra, State Islamic University of Syarif Hidayatullah Jakarta, Indonesia
Rosiyati Mh Thamrin, STMIK Sepuluh Nopember Jayapura, Indonesia

ORGANIZING COMMITTEE
General Chair
Husni Teja Sukmana (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)

Local Organizing Committee Chair
Edy Victor Haryanto (Potensi Utama University)

Publication
Yusuf Durachman (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)

Publicity
Yuditha Ichsani (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Asep Taufik Muharram (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Andi Sanjaya (Potensi Utama University)
Hardianto (Potensi Utama University)

Committee Members
Feri Fahrianto (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Nurul Faizah Rozy (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Siti Ummi Masrurah (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Dewi Khairani (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Fitri Mintarsih (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Arini (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Nia Kumaladewi (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)
Rofiqoh Dewi (Potensi Utama University)
Charles Bronson (Potensi Utama University)
Linda Wahyuni (Potensi Utama University)
Asbon Hendra (Potensi Utama University)
Iwan Fitrianto (Potensi Utama University)
Muhammad Rusdi Tanjung (Potensi Utama University)
Lili Tanti (Potensi Utama University)
Evri Ekadiansyah (Potensi Utama University)
Soeheri (Potensi Utama University)
Haris (Potensi Utama University)

TECHNICAL PROGRAM COMMITTEE

Chair
Ismail Khalil (Johannes Kepler University, Austria)
M Qomarul Huda (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)

Track Chair:
A'ang Subiyakto (State Islamic University of Syarif Hidayatullah Jakarta, Indonesia)

Technical Program Committee
Kuncoro Wastwibowo, IEEE Indonesian Section
Shingo Mabu, Yamaguchi University
Normaziah Abdul Aziz, International Islamic University, Malaysia
Akram M. Zeki, International Islamic University, Malaysia
Abdullah Alkalbani, University of Buraimi, Sultanate of Oman
Suvdaa Batsuuri Affiliasi, School of Engineering and Applied Sciences, National University of Mongolia
Suryadiputra Liawatimena, IEEE Indonesian Section Computer Society Chapter, Bina Nusantara University
Dwiza Riana, STMIK Nusa Mandiri, Indonesia
M Qomarul Huda, State Islamic University of Syarif Hidayatullah Jakarta, Indonesia
Muhammad Izman Herdiansyah, Bina Darma University, Palembang, Indonesia
Iwan Setyawan, Kristen Satya Wacana University, Indonesia
Abdul Syukur, Dian Nuswantoro University, Indonesia
Heru Agus Santoso, Dian Nuswantoro University, Indonesia
Affandy, Dian Nuswantoro University, Indonesia
Andrew Tanny Liem, Klabat University, Indonesia
Muhammad Rusli, The School of Information Management and Computer Engineering (STIKOM) Bali, Indonesia
I Gde Putu Wirarama Wedashwara Wirawan, The School of Information Management and Computer Engineering (STIKOM) Bali, Indonesia
Yudi Agusta, The School of Information Management and Computer Engineering (STIKOM) Bali, Indonesia
Muhammad Agni Catur, Sampoerna University, Indonesia
Aries Kusdaryono, Ministry of Communication and Informatics, Indonesia
Samsuryadi Sahmin, Sriwijaya University, Indonesia
M. Fachrurozi, Sriwijaya University, Indonesia
Teddy Mantoro, Sampoerna University, Indonesia
Qonita Shahab, UX Specialist, Netherlands
Murni Mahmud, International Islamic University, Malaysia
Noor Azuratni, University Technologi Malaysia, Malaysia
Azizul Azizan, University Technologi Malaysia, Malaysia
Adamu Ibrahim, University Technologi Malaysia, Malaysia
Kamila Bin Kamardin, University Technologi Malaysia, Malaysia
Akeem Olowo, University Technologi Malaysia, Malaysia
Sya Azmeela, University Technologi Malaysia, Malaysia
Kusrim, Amikom University, Indonesia
Ema Utami, Amikom University, Indonesia
Kim Jin Mook, Sunmoon University, South Korea
Houari Sabirin, KDDI Research, Inc
Khamis Faraj Alarabi Aljribi, Baniwalid University, Libya
Leon Andretti Abdillah, Bina Darma University, Indonesia
Darmawan Napitupulu, Indonesian Research Institute, Indonesia
Golooba Moses, Islamic University In Uganda
Wendi Usino, Budi Luhur University, Indonesia
Mochamad Wahyuudi, Bina Sarana Informatika, Indonesia
Roy Rudolf Huizen, Universitas Sumatera Utara Medan, Indonesia
Wisnu Ananta Kusuma, Bogor Agricultural University
Opim Salim Sitompul, Universitas Sumatera Utara Medan, Indonesia
Purwanto, Udinus Semarang, Indonesia
Yana Aditia Gerhana, UIN Sunan Gunung Djati Bandung, Indonesia
Ali Ramdhani, UIN Sunan Gunung Djati, Indonesia
Agus Rifai, International Islamic University Malaysia
Diyah Puspitaningrum, Bengkulu University, Indonesia
Umar Aditiawarman, International Islamic University Malaysia
Purwanto, Udinus Semarang, Indonesia
Dini Octarina Dwi Handayani, Taylors University
Arief Setyanto, AMIKOM Yogya, Indonesia
Elis Ratna Wulan, UIN Sunan Gunung Djati, Indonesia
Muljono, UDINUS Semarang, Indonesia
Untung Rahardja, STMIK Rahardja, Indonesia
Sri Hartati, Gadjah Mada University, Indonesia
Muhtar Lubis, Telkom University, Indonesia
Retantyo Wardoyo, Gadjah Mada University, Indonesia
Insap Santos, Gadjah Mada University, Indonesia
Arief Setyanto, AMIKOM Yogya, Indonesia
Sunny Arief Sudiro, STMIK Jakarta STI&K, Indonesia
Arief Setyanto, AMIKOM Yogya, Indonesia
Evi Triandini, STIKOM Bali, Indonesia
Rahmat Sembiring, Poltek Medan, Indonesia
Achmad Nizar Hidayanto, UDINUS Semarang, Indonesia
Soetam Rizky Wicaksano, Machung University
Nur Sultan Salahuddin, Gunadarma University, Indonesia
Yaqoob Koondhar, Sindh Agriculture University Tandojam, Pakistan
Ankhbayar Yukhuu, The national university of Mongolia
M. Ary Heryanto, UDINUS Semarang, Indonesia
Arief Fatchul Huda, UIN Sunan Gunung Djati, Indonesia
Very Ronny Palilingan, Universitas Negeri Manado, Indonesia
Mohammad Syafrullah, Budi Luhur University, Indonesia
Meyliana, Bina Nusantara University, Indonesia
Masayu Leylia Khodra, ITB, Indonesia
Heru Susanto, Indonesian Institute of Science, Indonesia
Rifki Sadikin, Indonesian Institute of Science, Indonesia
Muhammad Khusairi Osman, Universiti Teknologi Mara (UiTM) Malaysia
Lili Wulandhari, Bina Nusantara University, Indonesia
Meyliana, Bina Nusantara University, Indonesia
Untung Rahardja, STMIK Rahardja, Indonesia
TABLE OF CONTENT

FRONT MATTER

PREFACE

COMMITTEES

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pinning-Up Green IT for Competitive Advantage In Education Industries</td>
<td>Doni Purnama Alamsyah, Rizal Amegia Saputra, Tuti Alawiyah, Herlan Sutisna, Dini Silvi Purnia and Miftah Farid Adiwisastra</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>Intra-Integration Conceptual Framework using OBASHI Model Toward Business-IT Communication, Case Study: UKRIDA' IT Infrastructure Division</td>
<td>Marcel</td>
<td>6-11</td>
</tr>
<tr>
<td>3</td>
<td>Secure and Effective Reengineering Information System and Business Processes of Cross-Border Control between the Republic of Indonesia and the Republic Democratic of Timor-Leste</td>
<td>Fransiskus M.H. Tjiptabudi, Skolastika Siba Igon, Raul Bernardino and Asep Taufik Muharram</td>
<td>12-18</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of Project Integration on Smart Parking System in Telkom University</td>
<td>Muharman Lubis, Rahmat Fauzi, Arif Ridho Lubis and Rokhman Fauzi</td>
<td>19-24</td>
</tr>
<tr>
<td>5</td>
<td>A Case Study of Universities Dormitory Residence Management System (DRMS) in Indonesia</td>
<td>Muharman Lubis, Rokhman Fauzi, Arif Ridho Lubis and Rahmat Fauzi</td>
<td>25-30</td>
</tr>
<tr>
<td>6</td>
<td>The Influence of Iteration Calculation Manipulation on Social Network Analysis toward Twitter's Users Against Hoax in Indonesia with Single Cluster Multi-Node Method Using Apache Hadoop Hortonworkstm Distribution</td>
<td>Husain Faiz Karimi, Arini, Siti Ummi Masruroh and Fitri Mintarsih</td>
<td>31-36</td>
</tr>
<tr>
<td>7</td>
<td>Indonesia National Cybersecurity Review: Before and After Establishment National Cyber and Crypto Agency (BSSN)</td>
<td>Mulyadi and Dwi Rahayu</td>
<td>37-42</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>8</td>
<td>Big Data Analysis Using Hadoop Framework and Machine Learning as Decision Support System (DSS) (Case Study: Knowledge of Islam Mindset)</td>
<td>Nurhayati and Busman</td>
<td>43-48</td>
</tr>
<tr>
<td>9</td>
<td>Thresholding Technique in the Application of Sclera Segmentation</td>
<td>Fahmi Akmal Dzulkifli, Mohd Yusoff Mashor and Karniza Khalid</td>
<td>49-54</td>
</tr>
<tr>
<td>10</td>
<td>Underwater Image Enhancement Using Guided Joint Bilateral Filter</td>
<td>Muhammad Nasir, Arini and Feri Fahrianto</td>
<td>55-60</td>
</tr>
<tr>
<td>11</td>
<td>Fuzzy Tahani Algorithm and REST Web Service for Tourist Destination Recommendation</td>
<td>Yana Aditia Gerhana, Dian Sa’Adillah Maylawati, Wisnu Uriawan and Galfin Muzani Syukur</td>
<td>61-66</td>
</tr>
<tr>
<td>12</td>
<td>The Employee Promotion Base on Specification Job’s Performance Using: MCDM, AHP, and ELECTRE Method</td>
<td>Akmaludin, Mohammad Badrul, Linda Marinda, Sopiyan Dalis, Sidik and Budi Santoso</td>
<td>67-71</td>
</tr>
<tr>
<td>13</td>
<td>NFC Based Mobile Attendance System with Facial Authorization on Raspberry Pi and Cloud Server</td>
<td>Siti Ummi Masruroh, Andrew Fiade and Imelda Ristanti Julia</td>
<td>72-77</td>
</tr>
<tr>
<td>14</td>
<td>An Investigation on Factors that Affect Trust Model Toward The E-Government Procurement Success Factors In Indonesia</td>
<td>Herlino Nanang, Yusuf Durachman, Imam Subchi, Ahmad F. Misman, and Zahidah Zulkifli</td>
<td>78-82</td>
</tr>
<tr>
<td>15</td>
<td>Comparative Studies: The Effect of Service Quality System toward Customer Satisfaction on TIKI and JNE</td>
<td>Nur Komariah, Suryana H Achmad and Rahmat Hidayat</td>
<td>83-87</td>
</tr>
<tr>
<td>16</td>
<td>Implementation of Data Collecting Platform Over Distributed Sensors for Global Open Data for Agriculture and Nutrition</td>
<td>Yuyanto and Suryadiputra Liawatimena</td>
<td>88-94</td>
</tr>
<tr>
<td>17</td>
<td>Identification and Position Estimation Method with K-Nearest Neighbour and Home Occupants Activity Pattern</td>
<td>Alfatta Rezqa Winnersyah, Feri Fahrianto and Nenny Anggraini</td>
<td>95-98</td>
</tr>
<tr>
<td>18</td>
<td>Performance Evaluation DMVPN Using Routing Protocol RIP, OSPF, And EIGRP</td>
<td>Andrew Fiade, Khairul Hamdi Putra Widya, Siti Ummi Masruroh, and Imelda Ristanti Julia</td>
<td>99-104</td>
</tr>
</tbody>
</table>
19 Comparison of Optimization of Algorithm Particle Swarm Optimization and Genetic Algorithm with Neural Network Algorithm for Legislative Election Result

Mohammad Badrul, Frieyadie, Akmaludin, Dwi Arum Ningtyas, Daning Nur Sulistyowati, and Nurajijah

112-116

20 Noise Reduction through Bagging on Neural Network Algorithm for Forest Fire Estimates

Rangga Sanjaya, Fitriyani, Suharyanto and Diah Puspitasari

117-121

21 Open Data and Right to Information in Malaysia: A Comparative Analysis

Mahyuddin Daud and Sonny Zulhuda

22 Classification of Science, Technology and Medicine (STM) Domains with PSO and NBC

Erfian Junianto, Mayya Nurbayanti Shobary, Rizal Rachman, Ai Ilah Warnilah and Bambang Kelana Simpony

122-127

23 Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network

Asti Herliana, Toni Arifin, Sari Susanti and Agung Baitul Hikmah

128-131

24 Measuring Quality of Information System Through Delone Mclean Model in Online Information System of New Student Registration (SISFO PPDB)

Jamal Maulana Hudin, Yusti Farlina, Rizal Amegia Saputra, A. Gunawan, Denny Pribadi and Dwiza Riana

132-137

25 Addressing the Threats of Online Theft of Trade Secret and Cyber Espionage in Malaysia: The Legal Landscape

Juriah Abd Jalil

138-143

26 Review of Customer-Centered Knowledge Management Models: Goals and Key Factors

Muhammad Fadhil Dzulfikar, Iik Wilarso and Deki Satria

144-148

27 IT Operation Services: Impacts of Maturity Levels of IT Governance on Online Stores in West Kalimantan

Sandy Kosasi, Harjanto Prabowo, Dyah Budiastuti and Vedyanto

149-154
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Implementation of The Naïve Bayes Algorithm with Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online Companies</td>
<td>155-159</td>
</tr>
<tr>
<td>29</td>
<td>Systematic Implementation of ASM (Asset Management System)</td>
<td>160-164</td>
</tr>
<tr>
<td>30</td>
<td>Sentiment Analysis of Online Auction Service Quality on Twitter Data: A case of E-Bay</td>
<td>165-169</td>
</tr>
<tr>
<td>31</td>
<td>Improving The Accuracy of Neural Network Technique with Genetic Algorithm for Cervical Cancer Prediction</td>
<td>170-176</td>
</tr>
<tr>
<td>32</td>
<td>Certainty Factors in Expert System to Diagnose Disease of Chili Plants</td>
<td>177-182</td>
</tr>
<tr>
<td>33</td>
<td>Analysis Model of User Acceptance Knowledge Management System (KMS) at PT. Samsung R&D Institute Indonesia (SRIN)</td>
<td>183-187</td>
</tr>
<tr>
<td>34</td>
<td>Protecting Consumers from Misleading Online Advertisement for Herbal and Traditional Medicines in Malaysia: Are the Laws Sufficient?</td>
<td>188-193</td>
</tr>
<tr>
<td>35</td>
<td>The User Acceptance of Service Desk Application System Description</td>
<td>194-198</td>
</tr>
<tr>
<td>36</td>
<td>Pornographic Novel Criterion on Indonesian Cultural Background</td>
<td>199-203</td>
</tr>
<tr>
<td>37</td>
<td>Improvement Accuracy of Instant Noodle Product Selection Using Method ANP</td>
<td>204-209</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>38</td>
<td>An Improved of Stemming Algorithm for Mining Indonesian Text with Slang on Social Media</td>
<td>Dian Sa'Adillah Maylawati, Wildan Budiawan Zulfikar, Cepy Slamet, Muhammad Ali Ramdhani, and Wisnu Uriawan</td>
</tr>
<tr>
<td>39</td>
<td>Beaufort Cipher Algorithm Analysis Based on the Power Lock-Blum Blum Shub In Securing Data</td>
<td>Rita Novita Sari and Ratna Sri Hayati</td>
</tr>
<tr>
<td>40</td>
<td>Applying Fuzzy Multiple-Attribute Decision Making Based on Set-pair Analysis with Triangular Fuzzy Number for Decent Homes Distribution Problem</td>
<td>Irvanizam, Intan Syahrini, Razief Perucha Fauzie Afidh, Muhammad Reki Andika and Hizir Sofyan</td>
</tr>
<tr>
<td>41</td>
<td>The Use of FIFO Method for Analysis and Design Inventory Information System</td>
<td>Meinarini Utami, Dwi Sabarkhah, Elvi Fetrina, and M. Qomarul Huda</td>
</tr>
<tr>
<td>42</td>
<td>Enhancement of Independence and Students Learning Outcomes by Using Self-Directed Learning</td>
<td>Nita Syahputri, Ommi Alfina, Ulfah Indriani, and Fithri Tahel</td>
</tr>
<tr>
<td>43</td>
<td>Expert System Diagnose Tuberculosis Using Bayes Theorem Method and Shafer Dempster Method</td>
<td>Dedi Leman, Yudi, and Muhammad Fauzi</td>
</tr>
<tr>
<td>44</td>
<td>Educational Games as A learning media of Character Education by Using Multimedia Development Life Cycle (MDLC)</td>
<td>Sri Lestari Rahayu, Fujiati, and Rofiqoh Dewi</td>
</tr>
<tr>
<td>45</td>
<td>Strategies to Improve Human Resource Management using COBIT 5 (Case Study: Center for Data and Information Systems (Pusdatin) Ministry of Agriculture)</td>
<td>Fitroh, Arbaiti Damanik and Asep Fajar Firmansyah Iwa Airlangga</td>
</tr>
<tr>
<td>46</td>
<td>Assessment of Relationship Management using ODS (Online Database System) at the Ministry of Cooperatives and SMEs with the Community Based on COBIT 5</td>
<td>Fitroh, Suci Ratnawati, and Tyas Rosiana Dewi</td>
</tr>
<tr>
<td>47</td>
<td>Hybrid Cryptography WAKE (Word Auto Key Encryption) and Binary Caesar Cipher Method for Data Security</td>
<td>Mikha Sinaga and Nita Sari Br Sembiring</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>48</td>
<td>A Forward Chaining Trace Analysis In Diagnosing Tamarillo Disease</td>
<td>Mikha Dayan Sinaga, Bob Subhan Riza, Juli Iriani, Ivi Lazuly, Daifiria, Edy Victor H.</td>
</tr>
<tr>
<td>49</td>
<td>Analysis of Dempster Shafer Method In Diagnosing Diseases Inflamed By Salmonella Bacteria</td>
<td>Nita Sembiring and Mikha Sinaga</td>
</tr>
<tr>
<td>51</td>
<td>Application of Fuzzy Multi Criteria Decision Making Determining Best Cooking Oil</td>
<td>Hardianto, Nogar Silitonga, Bob Subhan Riza, and Edy Victor Haryanto S</td>
</tr>
<tr>
<td>52</td>
<td>The Implementation of Balanced Scorecard Method to Measure Study Program Key Performance Indicators</td>
<td>Ratna Sri Hayati, Rita Novita Sari, and Ivi Lazuly</td>
</tr>
<tr>
<td>53</td>
<td>Management Information Systems Doctorate Program of Educational Management</td>
<td>Mukhneri Mukhtar, Andi B Fransiska and Mochamad Wahyudi</td>
</tr>
<tr>
<td>54</td>
<td>Election Public Transport Based Online for Women Using Importance Performance Analysis (IPA)</td>
<td>Linda Marlinda, Yusuf Durachman, Wahyu Indrarti, Eva Zuraidah and Dinar Ajeng Kristiyanti</td>
</tr>
<tr>
<td>55</td>
<td>Sentiment Analysis of State Officials News On Online Media Based On Public Opinion Using Naive Bayes Classifier Algorithm And Particle Swarm Optimization</td>
<td>Ali Idrus, Her lambang Brawijaya and Maruloh</td>
</tr>
<tr>
<td>56</td>
<td>TAM Approach on E-Commerce of Aircraft Ticket Sales On Consumer Purchase Intention</td>
<td>Gusti Syarifudin, Bahtiar Abbas and Pantri Heriyati</td>
</tr>
<tr>
<td>58</td>
<td>Effectiveness of IT Governance of Online Businesses with Analytical Hierarchy Process Method</td>
<td></td>
</tr>
</tbody>
</table>
59 Analysis of K-Means and K-Medoid’s Performance Using Big Data Technology (Case Study: Knowledge of Shia History)
Nurhayati, Nadika Sigit Sinatrya, Luh Kesuma Wardani and Busman
316-320

60 A Comparison Tsukamoto and Mamdani Methods in Fuzzy Inference System for Determining Nutritional Toddlers
Dewi Ayu Nur Wulandari, Titin Prihatin, Arfhan Prasetyo and Nita Merlina
321-327

61 Clustering Algorithm Comparison of Search Results Documents
David Liauw and Raymondus Raymond Kosala
328-333

62 Performance Improvement of C4.5 Algorithm using Difference Values Nodes in Decision Tree
Handoyo Widi Nugroho, Teguh Bharata Adji and Noor Akhmad Setiawan
334-339

63 Expert System of Diagnosis Koi’s Fish Disease by Certainty Factor Method
Wirhan Fahrozi, Charles Bronson Harahap, Andrian Syahputra, and Rahmadani Pane
340-344

64 Expert System of Diagnosis Impairment Nutrition of The Thin Body By Dempster Shafer Method
Wirhan Fahrozi, Andrian Syahputra, Charles Bronson Harahap, and Fitriana Harahap
345-350

65 Implementation of Naïve Bayes Classification Method In Predicting Car Purchases
Fitriana Harahap, Ahir Yugo Nugroho Harahap, and Evri Ekadiansyah
351-355

66 A Weighted Adaptive Fuzzy Interpolation Method of Interval Type-2 Polygonal Fuzzy Sets
Stenly Ibrahim Adam
356-361

Qurrotul Aini, Nur Aeni Hidayah, and Annisa Nurul Istiqomah
362-366

68 Classification of Lower Back Pain Using K-Nearest Neighbor Algorithm
Green Arther Sandag, Natalia Elisabet Tedry and Steven Lolong
367-371

69 Lowering the Gradient Error on Neural Network Using Backpropagation to Diagnose Psychological Problems in Children
Nurhayati, Abdul Meizar, Nidia Anjelita Saragih, and Ermayanti Astuti
372-376
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Designing and Building an Information System of Career Development and Alumni Based on Android (Case Study: Information Systems Department, Syarif Hidayatullah State Islamic University Jakarta)</td>
<td>Abdul Azis, Yuni Sugiarti, Nia Kumaladewi, and Muhammad Qomarul Huda</td>
<td>377-381</td>
</tr>
<tr>
<td>71</td>
<td>The Role of Social Commerce Features and Customer Knowledge Management in Improving SME's Innovation Capability</td>
<td>Winarni, Muhammad Fadhil Dzulfikar, Regina Carla Handayani, Andy Syahrizal, Dana Indra Sensuse, Deki Satria and Ika A Wulandari</td>
<td>382-387</td>
</tr>
<tr>
<td>72</td>
<td>Analysis of Electronic Logistics (E-Logis) System Acceptance Using Technology Acceptance Model (TAM)</td>
<td>Lilyani Asri Utami, Suparni, Ishak Kholil, Lia Mazia and Rizki Aulianita</td>
<td>388-393</td>
</tr>
<tr>
<td>73</td>
<td>Key Management Using Combination of Diffie–Hellman Key Exchange with AES Encryption</td>
<td>Yusfrizal, Abdul Meizar, Helmi Kurniawan, Fhery Agustin</td>
<td>394-399</td>
</tr>
<tr>
<td>74</td>
<td>Master Data Management Maturity Assessment: A Case Study in the Supreme Court of the Republic of Indonesia</td>
<td>Nanik Qodarsih, Satrio Baskoro Yudhoatmojo and Achmad Nizar Hidayanto</td>
<td>400-406</td>
</tr>
<tr>
<td>75</td>
<td>Model Prediction of Psychoanalysis Trend of Radical Emotional Aggressiveness Using EEG and GLCM-SVM Method</td>
<td>Anif Hanifa Setianingrum and Bagus Sulistio</td>
<td>407-413</td>
</tr>
<tr>
<td>76</td>
<td>Examining the Relationship of Technology, Personal and Environment Factors on the User Adoption of Online Laboratory in the Field of Health</td>
<td>Dwiza Riana, Rachmawati Darma Astuti, Ina Maryani and Achmad Nizar Hidayanto</td>
<td>414-419</td>
</tr>
<tr>
<td>77</td>
<td>Application of ANP Methods In The Best Bread Products Selection</td>
<td>Ratih Adinda Destari and Linda Wahyuni</td>
<td>420-422</td>
</tr>
<tr>
<td>79</td>
<td>Analyzing Topsis Method for Selecting the Best Wood Type</td>
<td>Ria Eka Sari, Ahir Yugo Nugroho and Abdul Meizar</td>
<td>427-432</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>80</td>
<td>Analysis of Factors Cause High Electricity Use of Households</td>
<td>Fina Nasari, Rofiqoh Dewi, and Fujiati</td>
<td>433-436</td>
</tr>
<tr>
<td>81</td>
<td>Optimizing Selection of Used Motorcycles With Fuzzy Simple Additive</td>
<td>Dahri Yani Hakim Tanjung, and Robiatul Adawiyah</td>
<td>437-440</td>
</tr>
<tr>
<td></td>
<td>Weighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Development of Population Administration Service System</td>
<td>Nia Kumaladewi, Suci Ratnawati, Basic Dirgantara Bayu Aji Pamungkas, and</td>
<td>441-445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muhammad Qomarul Huda</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Teacher Engagement Interventions through ITEI Apps</td>
<td>Sasmoko, Yasinta Indrianti, Samuel Anindyo Widhoyoko, Yogi Udjaja and Alvin</td>
<td>446-449</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanurwijaya</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Efficiency of Bayes Theorem in Detecting Early Symptoms of Avian</td>
<td>Adil Setiawan, Soeheri, Erwin Panggabean, Bagus Riski, Mas Ayoe Elhias and Frans</td>
<td>450-454</td>
</tr>
<tr>
<td></td>
<td>Diseases</td>
<td>Ikorasaki</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Monitoring and Evaluation of Flight Instructor Performance with</td>
<td>Safrizal, Lili Tanti, Iwan Fitrianto Rahmad, Yanyang Thanri</td>
<td>455-460</td>
</tr>
<tr>
<td></td>
<td>PROMETHEE Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Measurement of Successful Implementation of Knowledge Management</td>
<td>Kristian Ibrahim M., Dana Indra S., M. Ichsan, Wida Choirunnisa, and Gusni</td>
<td>461-466</td>
</tr>
<tr>
<td></td>
<td>System: Case Study Ministry of Finance of the Republic of Indonesia</td>
<td>Haryadi</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Application of AHP Method Based on Competence in Determination of</td>
<td>Rofiqoh Dewi, Wiwi Verina, Dahri Yani Hakim Tanjung, and Sri Lestari</td>
<td>467-471</td>
</tr>
<tr>
<td></td>
<td>Best Graduate Students</td>
<td>Rahayu</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>E-commerce Adoption in SME: A Systematic Review</td>
<td>Pamela Kareen, Betty Purwandari, Iik Wilarso and M. Octaviano Pratama</td>
<td>472-478</td>
</tr>
<tr>
<td>89</td>
<td>Implementation of Equal Width Interval Discretization on SMARTER</td>
<td>Alfa Saleh, Khairani Puspita, Andi Sanjaya, Daifiria, and Giovani</td>
<td>479-482</td>
</tr>
<tr>
<td></td>
<td>method in Acceptance of Computer Laboratory Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Improve Security Algorithm Cryptography Vigenere Cipher Using Chaos</td>
<td></td>
<td>483-487</td>
</tr>
<tr>
<td></td>
<td>Functions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
91 Implementation Data Mining in Prediction of Sales Chips with Rough Set Method
Helmi Kurniawans, Fhery Agustin, Yusfrizal, and Khairul Ummi

92 Increased Accuracy of Selection High Performing Employees Using Multi Attribute Utility Theory (MAUT)
Heri Gunawan and Hari Ramadhan

93 Auto Tee Prototype as Tee Golf Automation in Golf Simulator Studio
Ahmad Roihan, Po Abas Sunarya and Chandra Wijaya

94 Design and Build of Information System on E-Commerce of Organic Waste
Elpawati and Yuni Sugiarti

95 Decision Support System for Improving Electronic Pulse Buyer Services Based SMS Gateway
Ratih Puspasari, Lili Tanti, Budi Triandi, Iwan Fitrianto Rahmad and Evri Ekadiansyah

96 Efficiency of SMART method to Matching Profile method in choosing Delivery Service Partner
Adil Setiawan, Soeheri, Erwin Panggabean, Bagus Riski, Hardianto and Asbon Hendra Azhar

97 Implementation of Text Mining in Predicting Consumer Interest on Digital Camera Products
Dinda Ayu Muthia, Dwi Andini Putri, Hilda Rachmi and Artika Surniandari

98 Application of Clustering Method in Data Mining for Determining SNMPTN Quota Invitation UIN Syarif Hidayatullah Jakarta
Eva Khudzaeva, Fitri Mintarsih, Asep Taufik Muharram and Chandra Wirawan

99 Educational Game as A Learning Media Using DGBL and Forward Chaining Methods
Fujiati, Fina Nasari, Sri Lestari Rahayu, and Andi Sanjaya

100 e-Government Challenges in Developing Countries: A Literature Review
Ruci Melyanti, Bagus Utomo, Dana Indra Sensuse and Rinda Wahyuni
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Combining Photogrammetry and Virtual Reality for Exploration of Otanaha Fortress Heritage of Indonesia</td>
<td>Andria Kusuma Wahyudi, Edson Yahuda Putra, Joe Yuan Mambu and Stenly Ibrahim Adam</td>
<td>541-546</td>
</tr>
<tr>
<td>102</td>
<td>The Determination Of Household Surgical Feasibility For Poor Family By Using Weighted Product Method</td>
<td>Labuan Nababan and Elida Tuti</td>
<td>547-552</td>
</tr>
<tr>
<td>103</td>
<td>Employee Performance Assessment with Profile Matching Method</td>
<td>Safrizal, Lili Tanti, Ratih Puspasari, and Budi Triandi</td>
<td>553-558</td>
</tr>
<tr>
<td>104</td>
<td>Enterprise Architecture, Zachman Framework, Value Chain Analysis</td>
<td>Mas Ayoe Elhias, Rahmadani Pane, Wiwi Verina, Hardianto, and Efani Desi</td>
<td>559-562</td>
</tr>
<tr>
<td>105</td>
<td>An Approach to Classify Eligibility Blood Donors Using Decision Tree and Naive Bayes Classifier</td>
<td>Wildan Budiawan Zulfikar, Yana Aditia Gerhana and Aulia Fitri Rahmania</td>
<td>563-567</td>
</tr>
<tr>
<td>106</td>
<td>Risk Assessment on Information Asset at academic application using ISO 27001</td>
<td>Angraini, Megawati, and Lukman Haris</td>
<td>568-571</td>
</tr>
<tr>
<td>107</td>
<td>Decision Support System to Find the Best Restaurant Using AHP Method</td>
<td>Dedek Indra Gunawan Hts, Deny Adhar, Ommi Alfina, Adnan Buyung Nst and Erwin Ginting</td>
<td>572-576</td>
</tr>
<tr>
<td>111</td>
<td>Performance Change With or Without ITEI Apps</td>
<td>Sasmoko, Yasinta Indrianti, Samuel Anindyo Widhoyoko, Yogi Udaja and Unifah Rosyidi</td>
<td>590-593</td>
</tr>
</tbody>
</table>
112 Monte Carlo Application On Determining Production of Cakes
Nidia Enjelita Saragih, Ermayanti Astuti, Austin Alexander Parhusip, and Tika Nirmalasari
594-598

113 Determining User Satisfaction Factors on University Tuition Fee Systems Using End-User Computing Satisfaction (EU CS)
Nur Aeni Hidayah, Eri Rustamaji and Purusotama
599-603

114 Analysis of Students Graduation Target Based on Academic Data Record Using C4.5 Algorithm Case Study: Information Systems Students of Telkom University
Dela Youlina Putri, Rachmadita Andreswari and Muhammad Azani Hasibuan
604-609

115 Smart Car: Digital Controlling System Using Android Smartwatch Voice Recognition
Marchel Thimoty Tombeng, Regi Najoan and Noviko Karel
610-614

116 Utilization ELECTRE Method with Decision Support System in Select Locations Warehouse Production
Frans Ikorasaki and Muhammad Barkah Akbar
615-618

117 Detecting Corn Plant Disease with Expert System Using Bayes Theorem Method
Frans Ikorasaki and Muhammad Barkah Akbar
619-621

118 Building Digital Strategy Plan at CV Anugrah Prima, an Information Technology Service Company
Bayu Waspodo, Suci Ratnawati and Ridwan Halifi
622-625

119 Comparative Analysis of Encryption/Decryption Data Use the Symmetrical Key Algorithm of Bit Inserted Carrier (BIC)
Ommi Alfina, Nita Syahputri, Ulfah Indriani, Dina Irmayanti Hrp, and Erwin Ginting
626-630

120 Target Analysis of Students Based on Academic Data Record Using Method Fuzzy Analytical Hierarchy Process (F-AHP) Case Study: Study Program Information Systems Telkom University
Qalbinurl Setyani, Rachmadita Andreswari and Muhammad Azani Hasibuan
631-636

121 The Implementation of Augmented Reality as Learning Media in Introducing Animals for Early Childhood Education
Esron Rikardo Nainggolan, Hasta Herlan Asymar, Aloysius Rangga Aditya Nalendra, Anton, Fajar Sulaeman, Sidik, Ummu Radiyah and Susafa’Ati
637-642

122 Dempster-Shafer Method for Diagnose Diseases on Vegetables
643-646
Ermayanti Astuti, Nidia Enjelita Saragih, Nuraini Sribina and Rahmi Ramadhani

123 Combining Statistical and Interpretative Analyses for Testing E-Commerce Customer Loyalty Questionnaire
A’ang Subiyakto, Muhammad Rasyid Juliansyah, Meinarini Catur Utami and Aries Susanto

124 Accuracy Analysis of Pasang Aksara Bot using Finite State Automata Transliteration Method
Padma Nyoman Crisnapati, Putu Devi Novayanti, Gde Indrawan, Kadek Yota Ernanda Aryanto, and Made Satria Wibawa

125 Applying of Recommendation and Ratting Criterion in Evaluation of Mustahik Using AHP Method
Husni Teja Sukmana, Rizky Suprihadi, Tabah Rosyadi, and Imam Subchi

126 Indonesian Affective Word Resources Construction in Valence and Arousal Dimension for Sentiment Analysis
Khodijah Hulliyah, Normi Sham Awang Abu Bakar, Husni Teja Sukmana, and Amelia Ritahani Ismail

127 Comparison of SVM & Naïve Bayes Algorithm for Sentiment Analysis Toward West Java Governor Candidate Period 2018-2023 Based on Public Opinion on Twitter
Dinar Ajeng Kristiyanti, Akhmad Hairul Umam, Mochamad Wahyudi, Ruhul Amin and Linda Marlinda

128 The Comparison of Satisfaction Level Between Face to Face Conference and Teleconference Media on Employee’ Performance
Santi Arafah and Juliana

129 Sentiment Analysis for Popular e-traveling Sites in Indonesia using Naive Bayes
Tata Sutabri, Syopiansyah Jaya Putra, Muhammad Ridwan Effendi, Muhamad Nur Gunawan and Darmawan Napitupulu

130 E-Readiness for ICT Implementation of the Higher Education Institutions in the Indonesian
Mohamad Irfan, Syopiansyah Jaya Putra and Cecep Nurul Alam

131 Expert System for Social Assistance and Grant Selection Using Analytical Hierarchy Process
Ichsan Taufik, Wildan Budiawan Zulfikar, Mohamad Irfan, Jumadi and Finna Monica
132 Comparison of Certainty Factor and Forward Chaining for Early Diagnosis of Cats Skin Diseases
Wisnu Uriawan, Aldy Rialdy Atmadja, Mohamad Irfan and Nur Jati Luhung

693-699

133 Tropical Diseases Identification Using Neural Network Adaptive Resonance Theory 2
Rika Rosnelly and Linda Wahyuni

700-703

134 Segmentation for Tuberculosis (TB) Ziehl-Neelsen Stained Tissue Slide Image using Thresholding
Bob Subhan Riza, M. Y. Mashor, M. K. Osman, and H. Jaafar

704-706

135 SD-Enabled Mobile Fronthaul Dynamic Bandwidth and Wavelength Allocation (DBWA) Mechanism in Converged TWDM-EPON Architecture
Andrew Tanny Liem, I-Shyan Hwang, Aliakbar Nikoukar and Andrew Pakpahan

707-712

136 Integrating the Readiness and Usability Models for Assessing the Information System Use
Dwi Yuniarto, Mulya Suryadi, Esa Firmansyah, Dody Herdiana, Aang Subiyakto, and Aedah Binti Abd. Rahman

713-718

137 Abnormal Heart Rhythm Detection Based on Spectrogram of Heart Sound using Convolutional Neural Network
Made Satria Wibawa, I Md. Dendi Maysanjaya, Kadek Dwi Pradnyani Novianti and Padma Nyoman Crisnapati

719-722

138 Earthquake Damage Intensity Scaling System based on Raspberry Pi and Arduino Uno
Padma Nyoman Crisnapati, Putu Desiana Wulaning, I Nyoman Rudy Hendrawan, and Anak Agung Ketut Bagus Bandanagara

723-726

139 A Proposed Model of Green Computing Adoption in Indonesian Higher Education
Shofwan Hanief, Luh Gede Surya Kartika, Ni Luh Putri Srinadi and I Komang Rinartha Yasa Negara

727-732

140 Analysis of Electronic Ticketing System Acceptance Using an Extended Unified Theory of Acceptance and Use of Technology (UTAUT)
Aries Susanto, Putra Rama Mahadika, A’ang Subiyakto and Nuryasin

733-737

141 A Combination of Multi Factor Evaluation Process (MFEP) And The Distance To The Ideal Alternative (DIA) Methods For Majors Selection And Scholarship Recipients In SMAN 2 Tasikmalaya

738-744
Teuku Mufizar, Evi Dewi Sri Mulyani, Restu Adi Wiyono and Wendi Arifiana

142 Performance of Manual and Auto-Tuning PID Controller for Unstable Plant - Nano Satellite Attitude Control System
Hani Hazza A, Mashor, M.Y, and Mohammed Chessab Mahdi

143 The Development of University Website using User Centered Design Method with ISO 9126 Standard
Muhammad Dirga Dzulfiqar, Dewi Khairani and Luh Kesuma Wardhani

144 A Review on Cloud Computing Adoption from the Perspectives of Providers and Clients
Mohd Adam Suhaimi, Husnayati Hussin, Asma Md Ali and Noor Hazwani Mohamad Puad

145 Indonesian Muslims’ Political Disagreements on Social Media
Rena Latifa, Abdul Rahman Shaleh, Melanie Nyhof, and Dede Rosyada

146 University Teachers’ Perceptions of Using Computer Technology in An Indonesian English Language Classroom
Desi Nahartini, Rena Latifa, and Dede Puji Setiono

147 Online Gamers Self Control
Rena Latifa, Fuji Setiyawan, Imam Subchi, Desi Nahartini, and Yusuf Durachman

AUTHORS INDEX
Specify of Estimation Using C4.5 Algorithm of Software Project Estimation at the Point of Sales Application with Cocomo II

Kadinar Novel
Diploma in Informatics
AMIK Bina Sarana Informatika (BSI)
Jakarta, Indonesia
kadinar.ked@bsi.ac.id

Sfenrianto Sfenrianto
Information Systems Management
Department, BINUS Graduate Program – Master of Information Systems Management,
Bina Nusantara University,
Jakarta, Indonesia, 11480
sfenrianto@binus.edu

Windu Gata
Master of Computer Science - Postgraduate Programs
STMIK Nusa Mandiri
Jakarta, Indonesia
windu.gata@gmail.com

Kaman Nainggolan
Master of Computer Science - Postgraduate Programs
STMIK Nusa Mandiri
Jakarta, Indonesia
kaman@nusamandiri.ac.id

Mochamad Wahyudi
Master of Computer Science - Postgraduate Programs
STMIK Nusa Mandiri
Jakarta, Indonesia
wahyudi@nusamandiri.ac.id

Abstract—In software development, it is required an appropriate estimate. One of the most commonly used software project estimation models is Constructive Cost Model (COCOMO II). The model is often used to obtain accurate results in estimating important factors such as cost and human resources. However, to obtain more accurate estimation results, this study proposes a C4.5 algorithm based on COCOMO II estimation results. In this study, software project estimates are used in the Point of Sales (POS) applications. Based on these data with COCOMO II method, it is estimated that the schedule, staff, and cost are specifying estimation from the result of COCOMO II using a C4.5 algorithm. The accuracy of the estimation results is around 90% with Algorithm C4.5. The value can be used as a reference for the development of the next POS software project.

Keywords—cocomo II, algorithm C4.5, decision tree, point of sales, software project estimation

I. INTRODUCTION

Currently, the software has been used to support various business activities. The software is used in offices, small industries, manufacturing, entertainments, and others. In the development of software projects, it is required a good estimate of costs, human resources, and development schedule.

Estimated software development can use the COCOMO II Model approach [1] [2]. This approach is useful for making decisions in developing software projects [2]. However, the estimates using COCOMO II are less accurate [3].

Therefore, to improve the accuracy of software projects, Models such as COCOMO II must use The C4.5 Algorithm [4]. It has been used to overcome the problem of software project accuracy using COCOMO II model [5] [6]. Previous studies have shown that a C4.5 algorithms are more effective in predicting software projects [6] [7].

This study will estimate project development in Point of Sales application based on COCOMO II using C4.5 approach. The main purpose of this study is to analyse the effectiveness of using a C4.5 algorithm to determinate estimation from the result of COCOMO II.

II. RELATED WORK

Software is a physical abstraction that allows us to talk to hardware machines [12]. The software estimate is a prediction resources, such as development costs and timelines for specific software projects in certain environments, using defined methods [8]. One of the most common approaches to software estimation is the COCOMO II model.

The COCOMO II model has helped the company to estimate cost software development projects [3]. Software cost estimation is required to complete all of the resources work on the software project [1]. Resources estimates must be made at the beginning of the project for accuracy cost and requirements of other resources [9]. Therefore COCOMO II model needs to estimate the accuracy of costs and other resources before the development of software projects.

In addition, in their research on The Impact of CMMI Based Software Process Maturity on COCOMO II's Effort Estimation concludes an accurate cost estimation of software development is essential in budgeting, project planning, and effective project management control [14]. Different software cost estimation models have different inputs [13]. A study reviewed the cost estimation methodology concluded that the most important reason for the failure of software projects has been the subject of much research in the last decade. According to the results of some of the research presented in their paper, the root cause of software project failure is an improper estimate at the initial stage of the project [14]. Thus, introducing and focusing on estimation methods is very crucial to achieve accurate and reliable estimates.
In the current study, most of the current estimation techniques have been systematically illustrated. There is no estimation method that can present the best estimate in all situations and each technique can fit within a specific project. It is important to understand the principal of each estimation method to choose the best. The main reason is that the performance of each estimation method depends on several parameters such as project complexity, project duration, staff skills, development methods and so on. Some evaluation metrics and actual estimation examples have been done only to illustrate the performance of estimation methods (eg. Cocomo) [14]. Efforts to improve the performance of existing methods and introducing new estimation methods based on today's software project requirements can be a future work in this field.

An analysis of the estimated cost of software development using COCOMO II method in Inagata Technosmith concluded that cost estimation obtained from the results of this research can provide recommendations for further projects. Estimated time to complete the project using COCOMO II method was 12 months. Estimated employee to work on this project was 4 people, the estimated cost in 1 month amounted to Rp 8,396,000. So the estimated total cost of this project was Rp 100,752,000 [17].

In research estimation of software creation cost using COCOMO II method in information system [18] reporting development activities system of software project, concluded that:

- By using COCOMO II method can calculate or estimate business or cost and schedule or duration of time of a software project.
- In the first software project, the size used is derived from the conversion of Unadjusted Function Point (UFP) to the Source Line of Code (SLOC).
- On software projects that have been done and are intended for the development of the size used are derived from manual source code line calculation or using the help of freeware.
- On the other hand, it takes an accuracy of resource estimation from software project development. Limitations of the COCOMO II method in the estimation accuracy require another approach. One approach that can be used is the C4.5 algorithm.

A study reviewed the cost estimation methodology concluded that the most important reason for the failure of software projects has been the subject of much research in the last decade. Some evaluation metrics and actual estimation examples have been presented in this paper only to illustrate the performance of estimation methods (eg COCOMO). Attempting to improve the performance of existing methods and introducing new estimation methods based on today's software project requirements can be a future work in this field [13].

On the other hand, it takes an accuracy of resource estimation from software project development. Limitations of the COCOMO II method in the estimation accuracy require another approach. One approach that can be used is the C4.5 algorithm.

Responding to this, in the next research it is crucial a test with Algorithm C4.5 to get the results on the accuracy calculation of estimation of the COCOMO II method if it is used in project needs. The line of code (LOC) data originated from the repository of software projects on POS applications.

The C4.5 algorithm is one of the most popular Decision Tree methods, and more easily understood for classification or prediction. It is built in the form of a decision tree based on criteria as a learning model of the data sample [14].

Build decision trees from a project software prediction is based on the similarity data to describe precision, recall, and accuracy [9]. Such decision trees help managers decide whether projects are worth developing. The prediction accuracy of C4.5 in the software project can improve the accuracy percentage exceeds 40%. [10] and 89% [11]. Then, for recall and accuracy prediction of software project using decision tree are 84%, precision is 72% [9].

III. RESEARCH METHODOLOGY

The research method is done starting count the line of code (LOC) data of POS project, counting process the LOC data by using the SLOC Metric 3.0 application, estimation analysis using COCOMO II method, and result estimation with C4.5algorithm. Figure 1 shows the stages of the research conducted to estimate software projects.

A. LOC Data and Sloc Matric 3.0

The data required for the software cost estimation analysis materials is based on the LOC data that have been collected. The data is derived from the software project repository in the POS application. The analysis using the COCOMO II method must be based on calculations from the SLOC that are obtained from the LOC data of POS application, ie. in the form of a file uses PHP programming language.

It is processed by counting the number of lines of code on by using the SLOC Metric 3.0 application that serve as the determination of the estimated effort of the POS software project. Figure 2 shown the results of SLOC data retrieval using SLOC Metric 3.0 from POS application.
Fig. 2. SLOC Metric 3.0 Application

After all the files are inputted in SLOC Metric, then we obtained data from the SLOC or the modules of POS. There are several modules in the POS such as Sales, Order, Manual In Out Goods, Target, Returns, Stock, Mutation, Report, Customer, and Admin. Table I shows the number of files and SLOC data for the Customer module based on PHP files.

TABLE I. SLOC DATA CUSTOMER MODULE

<table>
<thead>
<tr>
<th>File</th>
<th>SLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer.php</td>
<td>298</td>
</tr>
<tr>
<td>_print_transaction_cust.php</td>
<td>277</td>
</tr>
<tr>
<td>edit_customer.php</td>
<td>231</td>
</tr>
<tr>
<td>daily_cust.php</td>
<td>207</td>
</tr>
<tr>
<td>customer_transaction.php</td>
<td>191</td>
</tr>
<tr>
<td>detail_transaction_cust.php</td>
<td>187</td>
</tr>
<tr>
<td>add_customer.php</td>
<td>165</td>
</tr>
<tr>
<td>detail_pelanggan.php</td>
<td>158</td>
</tr>
<tr>
<td>_print_daily_all.php</td>
<td>152</td>
</tr>
<tr>
<td>_print_customer.php</td>
<td>142</td>
</tr>
<tr>
<td>_print_daily_customer.php</td>
<td>112</td>
</tr>
<tr>
<td>_print_daily_cust_total.php</td>
<td>100</td>
</tr>
<tr>
<td>_print_customer_extend.php</td>
<td>100</td>
</tr>
<tr>
<td>update_customer.php</td>
<td>95</td>
</tr>
<tr>
<td>history_customer.php</td>
<td>91</td>
</tr>
</tbody>
</table>

Table II, shows the overall results of SLOC data from all modules POS application. Based on a total of 61275 SLOT data, the order module has the largest data, and the target module has the smallest data. This SLOT data will be used to estimation analysis using COCOMO II method.

TABLE II. THE RESULTS OF SLOC OF MODULES POS APPLICATION

<table>
<thead>
<tr>
<th>Modules</th>
<th>SLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>12092</td>
</tr>
<tr>
<td>Order</td>
<td>12431</td>
</tr>
<tr>
<td>Manual In Out Goods</td>
<td>7503</td>
</tr>
<tr>
<td>Target</td>
<td>1492</td>
</tr>
<tr>
<td>Retur</td>
<td>2801</td>
</tr>
<tr>
<td>Stock</td>
<td>3103</td>
</tr>
<tr>
<td>Mutation</td>
<td>2745</td>
</tr>
<tr>
<td>Report</td>
<td>8847</td>
</tr>
<tr>
<td>Customer</td>
<td>2761</td>
</tr>
<tr>
<td>Admin</td>
<td>7500</td>
</tr>
<tr>
<td>Total</td>
<td>61275</td>
</tr>
</tbody>
</table>

B. Estimation Analysis using COCOMO II Method

The estimation analysis using COCOMO II model required scale factor and cost driven for effort estimation [15]. The Scale Factor (S_Fi) used is PREC, FLEX, RESL, TEAM, and PMAT for each module. The data obtained from the interview with users.

TABLE III. SCALE FACTOR

<table>
<thead>
<tr>
<th>Module</th>
<th>PREC</th>
<th>FLEX</th>
<th>RESL</th>
<th>TEAM</th>
<th>PMAT</th>
<th>S_Fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Order</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Manual In Out Goods</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Target</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Retur</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Stock</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Mutation</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Report</td>
<td>H</td>
<td>VH</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.86</td>
</tr>
<tr>
<td>Customer</td>
<td>H</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.56</td>
</tr>
<tr>
<td>Admin</td>
<td>N</td>
<td>H</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>20.79</td>
</tr>
</tbody>
</table>

Table III, represents the Scale Factor value used to process estimation with COCOMO II, while the value obtained for PREC with $H = 2.48$ and $N = 3.72$ for FLEX with $N = 3.04$, $VH = 1.01$, for RESL with $L = 5.62$, for TEAM with value $N = 3.29$ and $L = 4.38$, for PMAT with value $N = 4.68$.

Then, the data cost driven in the estimation is required for each module as follows:

- \(\prod \) Emi Module of Sales = 16.74
- \(\prod \) Emi Module of Order = 16.74
- \(\prod \) Emi Module of Manual In Out Goods = 16.64
- \(\prod \) Emi Module of Target = 16.64
- \(\prod \) Emi Module of Return = 16.64
- \(\prod \) Emi Module of Stock = 16.64
- \(\prod \) Emi Module of Mutation = 16.64
- \(\prod \) Emi Module of Report = 17.14
- \(\prod \) Emi Module of Customer = 16.64

Thus, the results of effort estimation for each POS module as follows:

- \(E \) Module of Sales = 31,2452
- \(E \) Module of Order = 32,2254
- \(E \) Module of Manual In Out Goods = 16,8857
- \(E \) Module of Target = 2,78588
- \(E \) Module of Return = 2,78588
- \(E \) Module of Stock = 6,30124
- \(E \) Module of Mutation = 5,49977
- \(E \) Module of Report = 31,9163
- \(E \) Module of Customer = 5,53554
- \(E \) Module of Admin = 16,9566

The above data is the result of estimation of effort from the calculation by COCOMO II method, which then will be processed to get estimation result of schedule, cost estimation, and personnel estimation. Table IV shows the calculation of estimated schedule (TDEV), personnel (P), cost (Cost). Table V shows the criteria for determining validation. A condition for determining the value of the attribute whether it will be worth No or Yes, and Priority or Not.

Table IV. Estimated of Schedule, Cost, and Personnel

<table>
<thead>
<tr>
<th>Module</th>
<th>TDEV (in month)</th>
<th>P = (E / TDEV)</th>
<th>Cost = Personnel x Avg Labor Cost</th>
<th>Urgency Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>9,757796</td>
<td>3.202071</td>
<td>16.010.353</td>
<td>No</td>
</tr>
<tr>
<td>Order</td>
<td>9,843809</td>
<td>3.273668</td>
<td>16.368.340</td>
<td>No</td>
</tr>
<tr>
<td>Manual In Out Goods</td>
<td>8,192545</td>
<td>2.061103</td>
<td>10.305.517</td>
<td>No</td>
</tr>
<tr>
<td>Target</td>
<td>4,910044</td>
<td>0.567385</td>
<td>2.836.924</td>
<td>No</td>
</tr>
<tr>
<td>Return</td>
<td>5,994966</td>
<td>0.938301</td>
<td>4.691.506</td>
<td>No</td>
</tr>
<tr>
<td>Stock</td>
<td>6,191453</td>
<td>1.017732</td>
<td>5.088.659</td>
<td>No</td>
</tr>
<tr>
<td>Mutation</td>
<td>5,9547614</td>
<td>0.923289</td>
<td>4.616.444</td>
<td>No</td>
</tr>
<tr>
<td>Report</td>
<td>9,818934</td>
<td>3.250486</td>
<td>16.252.428</td>
<td>No</td>
</tr>
<tr>
<td>Customer</td>
<td>5,967697</td>
<td>0.927584</td>
<td>4.637.922</td>
<td>No</td>
</tr>
<tr>
<td>Admin</td>
<td>8,203367</td>
<td>2.067023</td>
<td>10.335.116</td>
<td>No</td>
</tr>
</tbody>
</table>

Conformity is the schedule for the target, return, transfer and customers module (project held > 6 month). Personnel suitability is the in or out goods manual, target, return, stock, mutation and customer module (personnel > 2 staff). While the cost estimation results, there are five modules that have a cost match, namely: target, return, stock, mutation and customer (cost > Rp. 10,000,000). Thus, urgency requirement is the sales, order, transfer and report module.
B. The result of C4.5 estimation

The results of estimation schedule, cost, and personnel will be used to data set (data training sample). It can be processed in the C4.5 algorithm in addition attributes of conformity and urgency (Table V represents). The following are the steps of the C4.5 classification algorithm model [16]:

- Calculating the number of cases for priority rather than priority and entropy from all cases. Entropy total rows are calculated based on training data using the equation:

\[\text{Entropy}(i) = -\sum_{j=1}^{m} f(i,j) \cdot \log_2 f[(i,j)] \]

(1)

\[\text{Entropy}(\text{total}) = (-4/10 \times \log_2(4/10)) + (-6/10 \times \log_2(6/10)) = 0.97095059445 \]

- Then calculate the entropy and gain values of each attribute, for example below is calculation of the entropy and gain values for attributes Conformity Schedule:

\[\text{Entropy}(i) = -\sum_{j=1}^{m} f(i,j) \cdot \log_2 f[(i,j)] \]

(2)

\[\text{Yes} = \left(-\frac{1}{4} \times \log_2 \left(\frac{3}{4} \right) \right) + \left(-\frac{3}{4} \times \log_2 \left(\frac{1}{4} \right) \right) \]

\[\text{No} = \left(-\frac{3}{6} \times \log_2 \left(\frac{3}{6} \right) \right) + \left(-\frac{3}{6} \times \log_2 \left(\frac{3}{6} \right) \right) \]

\[\text{Gain} = \text{Etotal} - \sum_{j=1}^{m} \text{total}/\text{total Kasus. E} \]

(3)

\[\text{Gain} = 0.971 - \left(\frac{4}{10} \times 0.811 \right) + \left(\frac{6}{10} \times 1 \right) \]

\[= 0.9709 - 0.926 \]

\[= 0.0469. \]

Entropy and gain calculations can be seen as follow:

1) Schedule Conformity for Gain 0.046, Entropy Yes 0.811 and Entropy No 1
2) Personnel Conformity for Gain 0.046, Entropy Yes 1 and Entropy No 0.811
3) Cost Conformity for Gain 0, Entropy Yes 0.971 and Entropy No 0.971
4) Urgency Conformity for Gain 0.042, Entropy Yes 0 and Entropy No 918.

The data from Table VI above is a value for making a decision tree. Figure 3 shows the decision tree to determine the module priority of the POS application project. The main purpose of analyzing data using the decision tree algorithm is to get the rule which will be used for decision making on the module priority. Then Table VII shows the result of project decision for priority.

![Decision Tree Specify of Estimation](image)

Fig. 3. Decision Tree Specify of Estimation

The rules derived from Figure 3 above are (1) If Urgency = "Yes", then "Priority"; (2) If Urgency = "No" and Schedule Conformity = "Yes", then "Priority"; and If Urgency = "No" and Schedule Conformity = "No", then "No". Table VII shows the result of project decision based on decision tree rules.

<table>
<thead>
<tr>
<th>Module</th>
<th>Schedule Conformity</th>
<th>Personnel Conformity</th>
<th>Cost Conformity</th>
<th>Urgency Requirement</th>
<th>Project Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Priority</td>
</tr>
<tr>
<td>Order</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Priority</td>
</tr>
<tr>
<td>Manual In Out Goods</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Target</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Return</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Priority</td>
</tr>
<tr>
<td>Stock</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mutation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Report</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Priority</td>
</tr>
<tr>
<td>Customer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Priority</td>
</tr>
<tr>
<td>Admin</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Based on Table VII the project decision of priority is the sale, order, target, return, mutation, report, and customer module.
The result of the decision tree that has been done is required to measure the accuracy level using K-Fold Cross method (see Table VIII). Based on K-Fold Cross method using C4.5 Algorithm it produces accuracy equal to 90%.

TABLE VIII. K-FOLD CROSS VALIDATION

<table>
<thead>
<tr>
<th>Pred. Priority</th>
<th>True Prioritas</th>
<th>True No</th>
<th>Class Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pred. No</td>
<td>1</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Class recall</td>
<td>100.00%</td>
<td>75.00%</td>
<td></td>
</tr>
</tbody>
</table>

accuracy: 90.00% +/- 30.00% (micro: 90.00%)

CONCLUSIONS

Based on the results of POS modules estimation using COCOMO II the important conclusions of this study are:
(1) Conformity the schedule is the target, return, transfer and customers module. (2) Personnel suitability is the in out goods manual, target, return, stock, mutation and customer module. (3) There are five modules that have a cost match, namely: target, return, stock, mutation, and customer. (4) The urgency requirement is the sales, order, transfer and report module. While estimation result with the decision tree method of C4.5 Algorithm for the decision of priority is the sale, order, target, return, mutation, report, and customer module that produces accuracy equal to 90%. The results of the estimation can be used for subsequent project development.

The recomandations in the next research are: (1) For further research, in estimating software costs, it is desirable to use sub models other than Early Design in order to gain a better understanding of this COCOMO II method; (2) Further research can improve this research by adding other cost estimation methods as a comparison with the results of this study.

REFERENCES

