Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori

Lihat/Buka File Repository

Lihat/Buka File Peer Review




Through the sales shoes activity every day, the data of the sales will be increase. The data was not only function as an archive for the company, data can be harnessed and processed into useful information to improve the sale of products shoes. The availability of sales data is not used optimaly, because there is no the support system decision and methods that can be used to design a business strategy to boost sales. Engineering processing data that used in this research was a priori algorithm and to get better results used tools tanagra version 1.4. Apriori algorithm including the types of regulations association on the mining. One of the stages analysis that attracts attention many researchers to produce a priori algorithm efficient is analysis pattern frequency a association were identified with two benchmark namely support and confidence. Based on the results of research , shoes most attractive to new balance is (91,67 %), adidas (75 %), geox (50 %), nike (41.67 %) and palladium (41.67 %)

Kata Kunci: Algorithm Apriori, Tanagra Verion 1.4, Data Mining


Bidang ilmu
Sistem Informasi


Faradillah,Sarah.(2013)Implementasi Data Mining untuk Pengenalan Karakteristik Transaksi Customer dengan Menggunakan algoritma C4.5: 63-70      

Hermawati, Fajar Astuti.(2013)Data Mining. Yogyakarta: Andi      

Husin, Al dan Mulyaningsih, F.(2015). Penerapan Metode Data Mining Analisis Terhadap Data Penjualan Pakaian Dengan Algoritma Apriori:374-385        

Kursini dan Emha Taufiq Luthfi.(2009)Data   Mining. Yogyakarta: Andi  Sari,

Dewi Puspita. (2015). Data Mining Perkiraan  Produksi Spanduk dengan Algoritma Apriori (Studi Kasus: CV. Mentati Persada Medan): 33-41.